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Two dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compress-
ible plasma with density gradient show that, in a transverse magnetic field configuration, the vortex
pairing process and the Rayleigh-Taylor secondary instability compete during the non-linear evolu-
tion of the vortices. Two different regimes exist depending on the value of the density jump across
the velocity shear layer. These regimes have different physical signatures that can be crucial for the
interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma.
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The Kelvin-Helmholtz instability has been shown [1]
to play a crucial role in the interaction between the so-
lar wind and the Earth’s magnetosphere and to provide a
mechanism by which the solar wind can enter the Earth’s
magnetosphere. Magnetic reconnection is believed to
dominate the transport properties at the low latitude
magnetopause when the field in the solar wind and the
geomagnetic field are antiparallel (southward solar wind
magnetic field). If magnetic reconnection were the only
mixing mechanism in the magnetotail, one would expect
that mixing between the solar wind and the magneto-
spheric plasma would not occur during northward mag-
netic field periods. Actually, an increase of the plasma
content in the outer magnetosphere during northward
magnetic field periods is not only observed but is even
larger than during southward configurations [1–3]. For
these reasons, the Kelvin-Helmholtz (hereafter K-H) in-
stability has been invoked as a possible mechanism in
order to account for the increase of the plasma trans-
port. In particular, the K-H instability can grow along
the flank magnetopause at low latitude, where a velocity
shear exists and where the nearly perpendicular magnetic
field does not inhibit the development of the instability
[4–6]. This provides an efficient mechanism for the for-
mation of a mixing layer and for the entry of solar plasma
into the magnetosphere, explaining the efficient transport
during northward solar wind periods. Several observa-
tions support this explanation and show that the physi-
cal quantities observed along the flank magnetopause at
low latitude are compatible with a K-H vortex [1, 7, 8].

Vortex pairing is believed to be the major process caus-
ing the increase in the thickness of the mixing layer in the
downstream region of the magnetotail. Inverse cascade,
i.e. vortex pairing, is a well known phenomenon in a two-
dimensional HydroDynamic framework [9, 10], and can
be expected to be an efficient process in the nearly two-
dimensional external region of the magnetopause at low
latitude [8, 11]. Net transport of momentum across the
initial velocity shear occurs both when the Fast Grow-
ing Mode (FGM) and its sub-harmonics (paired vortices)
grow, and when the vortex pairing process takes place.

In a homogeneous density system the momentum trans-
port caused by the vortex pairing process is much larger
than that due to the growth of the FGM [11] and thus
leads to a faster relaxation of the velocity shear.

Several studies have focused their attention on these
phenomena, providing an indirect estimate of the initial
thickness of the velocity shear layer, which is not directly
measured. Two different estimates were provided. The
first one assumes a relationship between the period of
the magnetopause oscillation in time, which increases in
the downward direction along the flank magnetopause,
and the size of the vortices that propagate with down-
stream phase velocity and at the same time undergo pair-
ing [12, 13]. The second one is based on a direct mea-
surement of the wave length of the vortices, taken to
correspond to not yet merged FGM vortices, which is
approximately eight times the initial thickness of the ve-
locity shear layer, deduced to be ∼ 5000 − 7000 km [1].
However, the density inhomogeneity in the layer between
the solar wind and the magnetosphere strongly modifies
the non-linear evolution of the K-H instability and makes
the K-H vortices produce a different type of secondary in-
stability which quickly leads to the onset of turbulence
[14, 15] in the system. Indeed the centrifugal acceleration
of the rotating K-H vortex acts as an ”effective” gravity
force on the plasma. If the density variation is large
enough, the Rayleigh-Taylor (hereafter R-T) instability
can grow effectively along the vortex arms. How quickly
the vortex becomes turbulent is crucial since the turbu-
lence caused by the onset of the R-T secondary instability
may destroy the structure of the vortices before they co-
alesce and may thus be the major cause of the increase in
the width of the layer with increasing velocity and den-
sity inhomogeneity. Rolled-up vortices, generated by the
FGM and entering in the non-linear stage, could then
evolve following an inverse cascade process [11], or by
developing secondary instabilities, as for example the R-
T instability [15] or Vortex Induced Reconnection (VIR)
[8, 16]. The role of VIR will be discussed in a future
article, since in the present letter we consider the initial
magnetic field to be perpendicular to the plane where the
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FIG. 1: Geometrical configuration adopted to describe the
plasma dynamics in the equatorial plane. The arrows show
the equilibrium velocity field in the comoving frame. The
shading represents the equilibrium density inhomogeneity be-
tween the dense solar wind and the tenuous Magnetosphere.
The equilibrium magnetic field is perpendicular to this plane.

K-H instability develops and to have no inversion points,
i.e. we do not include magnetic reconnection effects. This
choice allows us to isolate the processes of vortex pairing
and of the development of the secondary R-T instabil-
ity from processes related to VIR. We consider a 2D
description of the system, with the inhomogeneity direc-
tion along x, and the y-axis along the solar wind. This
choice is justified since the evolution of K-H instability is
only weakly affected by slow equilibrium variation along
the z-direction [5, 6]. We adopt a quasineutral plasma
model described by the following set of single-fluid equa-
tions which we write in dimensionless conservative form
as

∂n/∂t + ∇ · (nU) = 0, (1)

with n the plasma density and U the fluid velocity.

∂(nU)/∂t + ∇ ·
[

nUU + P
T

¯̄I − BB

]

= 0, (2)

with P
T

= P +B2/2, which is constant at t = 0, and the
isothermal closure

∂P/∂t + ∇ · (PU) = 0. (3)

The characteristic dimensional quantities are the mass
density, the Alfvén velocity and the ion skin depth. The
electric field is calculated by means of Ohm’s law

E = −U× B, (4)

where electron inertia and pressure terms are neglected.
The equilibrium magnetic field at t = 0 is taken of the
form Beq(x) = Beq(x)ez . In this 2D transverse config-
uration B(x, y, t) follows a pure MagnetoHydroDynamic
evolution also if the Hall term is included in Ohm’s law.
The magnetic field contributes only to determining the
degree of compressibility of the plasma in the perpen-
dicular plane which otherwise behaves hydrodynamically.

FIG. 2: Shaded isocontours in the (x, y) plane of the plasma
density for an initial density jump ∆n = 0.5 (first column)
at t = 370, 395, 425 and for ∆n = 0.8 (second column) at
t = 350, 392, 425.

For the low frequency range of interest the displacement
current is not included. The above equations are inte-
grated by means of a numerical code. In this code, nu-
merical stability is achieved by means of filters [17].
We consider an initial large-scale, sheared velocity field
given by Ueq = (U0/2) tanh [(x − Lx/2)/Lu] ŷ and an
equilibrium density of the form neq = 1 − (∆n/2) {1 −
tanh [(x − Lx/2)/Ln]}. We take Lu = Ln = 3.0 and the
box-length in the x direction Lx = 90. We choose the
box length Ly = 24π in the periodic y direction, in order
to have well separated linear growth rates for the modes
m = 1, 2, 3, where m = 2 corresponds to the FGM. The
values of the two dimensionless parameters, the sound
and Alfvén Mach numbers, are set as Ms = U0/Cs = 1.0,
MA = U0/UA = 1.0, with UA = 1.0 the value of the
Alfvén velocity at x = Lx. First in run 1 we consider
a relatively moderate initial density jump, ∆n = 0.5. In
Fig.2, left column, the shaded isocontours of the plasma
density show the formation and the evolution of two hy-
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FIG. 3: Time evolution of the first four Fourier components
of the plasma velocity along x, averaged along x, for an initial
density jump ∆n = 0.5 and for ∆n = 0.8, m=1 continuous,
m=2 (FGM) dashed, m=3 dash-dotted, m=4 dash - three
dotted line.The m=1, m=2 lines have been drawn thicker in
order to emphasize the pairing process.

drodynamic vortices generated by the K-H instability.
We see (top frame) that two vortices, corresponding to
the FGM wave number m = 2, start to interact (middle
frame) following an inverse cascade process typical of 2D
fluid systems. Eventually, the vortices merge generating
a single, large scale, vortex (bottom frame). The vor-
tex pairing process is clearly seen also in the first frame
of Fig.3 where we plot the time evolution of the ampli-
tude of the first four wave number modes of the plasma
velocity field along x. In particular, the m = 1 mode
corresponding to the largest wave length allowed in the
system, initially grows at a slower rate than the m = 2
mode but eventually dominates for t > 330. In the
case of a large initial density jump, ∆n = 0.8, run 2, the
evolution of the system is strongly affected by the de-
velopment of secondary R-T instabilities inside the vor-
tex arms as pointed out in the case of a single vortex
in Ref. [15]. Indeed, see the right column of Fig.2, af-
ter the generation of the two K-H vortices, top frame,
the R-T instability starts to develop inside the arms of
the vortices, leading to the formation of a turbulent layer
along the y-direction with typical transverse width of the
order of the vortex size, bottom frame. The vortex pair-
ing interaction is strongly depressed by the onset of the
secondary instability. This is clearly shown in the right
frame of Fig.3: the amplitude of the initial FGM m = 2
(dashed line), remains dominant even after saturation in
the non-linear phase where the m = 1 mode (continu-
ous line) undergoes a further increase but its amplitude
remains always lower than that of the m = 2 mode. In
order to investigate the onset of this secondary instabil-
ity, we consider each of the two vortices generated by
the K-H instability (right top frames of Fig.2) separately
and assume such a structure to be stationary in the time
interval 300 ≤ t ≤ 350. During this period, the vortex
propagates along the y-direction with a constant phase
velocity and nearly constant amplitude. We model the
vortex at t = 300 as an ”equilibrium” configuration and

take the values n1, u1 and n2, u2 inside two nearby vortex
arms connected to the more and to the less dense parts of
the plasma respectively, as the density and velocity val-
ues of two superposed inhomogeneous fluid plasmas in a
slab geometry. In this model, the two plasma slabs are
subjected to an ”effective” gravity which corresponds to
the centripetal acceleration arising from the arms curva-
ture. We label ℓu and ℓn the characteristic scale length of
the velocity and density gradient between the two arms,
and λ the typical wave length along the vortex arm as-
sociated to the development of the secondary instability
observed in the numerical simulation. Typical (dimen-
sionless) values are: ℓu ≃ ℓn ∼ 1, 10 ≥ λ ≥ 1.

The R-T instability is not affected by the finite value
of the length ℓn, at least until λ < ℓn. So, for the sake
of simplicity, we can model the system by a step-like
configuration. This allows us to obtain a rough esti-
mate of the growth rate of the development of the R-
T secondary instability as γRT =

√

g̃k(α1 − α2), where
α1 = ρ1/(ρ1 + ρ2), α2 = ρ2/(ρ1 + ρ2), and g̃ ≃ 0.1 is
estimated by using the value of the vortex rotation fre-
quency and of the curvature radius of the arms. For
λ = 10, 4, 1 we obtain γRT ≃ 0.2, 0.3, 0.6. On the con-
trary K-H modes are heavily affected by the finite value
of the shear-lengths ℓu. According to Ref. [18], we can
estimate the influence of the finite velocity shear layer on
the secondary K-H instability that develops in the vortex
arms, as γmax

KH
≃ 0.2 ∆U/2ℓu ≃ 0.06 Therefore, by taking

into account the profiles of the velocity shear and of the
density of the vortex, we conclude that the R-T instabil-
ity dominates and that the estimate of its growth rate is
in agreement with that observed in the numerical simu-
lations. Furthermore we observe that the variation of the
angular velocity inside the vortex is not large enough to
excite the Magneto-rotational instability [19]. This sug-
gests that this instability, which involves perturbations
that depend on the ignorable coordinate z, is not impor-
tant for the non-linear evolution of the KH vortex in a
transverse magnetic field configuration and allows us to
consider perturbations with ∂/∂z = 0.

The competition between the vortex pairing process
and the development of a turbulent layer driven by the
onset of secondary instabilities, has important conse-
quences from an observational point of view and can af-
fect the transport properties of the system. In Fig.4,
top left, by taking the average density value in the y di-
rection, we observe in the pairing case a density profile
inclined in the x direction with a thickness directly re-
lated to the size of the vortex which corresponds to the
the m = 2 mode at t = 310 and to the the m = 1 at
t = 425. In the ”turbulent” case instead, (see Fig.4 top
right), a ”plateau” is formed in the central region of the
initial sheared layer. We also note an asymmetric evolu-
tion of the average density profile, indicating a diffusion
of the plasma from the dense to the tenuous region, and
a typical thickness of this mixing layer comparable with
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FIG. 4: Plasma average density profile along the inhomogene-
ity direction (first row) at t = 0 continuous, t = 310 dash -
three dotted, t = 425 dashed line, and along the solar wind
direction (second row) at t = 425, for an initial density jump
∆n = 0.5 (first column) and for ∆n = 0.8 (second column).

the FGM vortex size. In Fig.4, bottom left, we show the
density profile along the y direction at x = 45.0 which
corresponds approximately to the center of the layer. We
see at t = 425 that the density profile is characterized by
well defined structures with typical length of the order
of Ly/3 consisting of the well known [1, 8] step-like con-
figuration that is directly related to the two vortex arms
connected to the more and to the less dense parts of the
plasma, and of a filament-like configuration that is re-
lated to the more complex central region of the vortex.
This profile exhibits a well-defined periodicity, given by
the wave length of the vortex, and is the signature of a
rolled-up vortex. It corresponds either to the FGM or to
its sub-harmonics generated by the inverse cascade. On
the other hand, in the case where the secondary insta-
bility develops, a sequence of alternating high and low
density filaments that do not exhibit a well defined wave
length is observed (see Fig.4, bottom right). This fact is
related to the transition of the system to a turbulent state
with the formation of a mixing layer via the development
of smaller and smaller structures.

The simulations presented here show that if the R-T
instability develops, it destroys the rolled-up vortices and
suppresses the pairing mechanism leading to the forma-
tion of a filaments-like density profile along the solar wind
direction. We think that these strong qualitative differ-
ences offer a signature that can be recognized in satellite
observations and used to compare numerical data with
satellite data measured along the flank magnetopause.

Since vortices propagate with downward phase veloc-
ity, increasing distance along the flank magnetopause is
equivalent to time evolution in our simulations. Indeed,
recently, a step-like configuration was observed in the
flank magnetopause and was related to the non-linear
evolution of the FGM, providing an indirect measure of
the initial length scale Lu [1]. This typical signature re-
veals the existence of rolled-up vortices which can then
evolve either following an inverse cascade process [11],
or developing secondary instabilities. From an observa-
tional point of view, the long term non-linear evolution
is still unclear. In measurements taken by a spacecraft
further away from Earth along the solar wind direction
we might expect to detect two different types of evolu-
tion. Moving downstream and following the development
of the propagating vortices, we could find either step-like
configurations with an increasing wave length related to
the inverse cascade, or filament-like configurations that
denote a rapid development to turbulence.

In conclusion the vortex pairing process and the R-T
secondary instability, compete. This leads to two dif-
ferent regimes governed by the density jump between
the solar wind and the magnetospheric plasma. When
the density variation is sufficiently large, the R-T in-
stability destroys the natural tendency of a two dimen-
sional fluid system to self-organize its motion into coher-
ent structures. In this case, the onset of turbulence via
the secondary RT instability is an efficient mechanism of
plasma transport. These two regimes have different sig-
natures that can in principle be compared to real satellite
data. This work was supported in part by PRIN-INAF
2005. We are pleased to acknowledge the “Mesocentre
SIGAMM” machine, hosted by Observatoire de la Côte
d’Azur, where part of the simulations was performed.
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