Open LIGO-Virgo alerts

Timeline

Time since gravitational-wave signal

Several pipelines, each can make several detections

Based on a given criteria, one is chosen as being the Prefered Event (for the public alert)

Modeled searches	Unmodeled searches
GSTLAL	cWB
MBTA	oLIB
РуСВС	
SPIIR	

Typical modeled search

GW150914

Typical modeled search

GW151226

Several pipelines, each can make several detections

Based on a given criteria, one is chosen as being the **Prefered Event** (for the public alert)

Modeled searches	Unmodeled searches
GSTLAL	cWB
MBTA	oLIB
РуСВС	
SPIIR	

7

S190814bv (NSBH)

Chirp for GW170817 (BNS)

Chirp for GW170817 (BNS)

Time (seconds)

Anyone can help characterizing glitches at Gravity Spy (collaborative: provide training for IA)

Loudest: GPS=1247616535.970, f=218.114 Hz, snr=4.358

Time [s]

Parameter estimation: LALInference

Bayesian parameter estimation

Markov Chain Monte Carlo (MCMC) or Nested sampling

15 parameters:

- 2 masses
- Luminosity distance
- Right ascension & declination
- Inclination angle
- Polarization angle
- Reference time
- Orbital phase at reference time
- 2 spin magnitudes
- Two angles for each spin

<u>Several models</u> (under permanent improvement):

- Frequency domain
 - Post-Newtonian waveform
 - Phenomenological calibrated to numerical relativity
- <u>Time domain</u>
 - Post-Newtonian waveform
 - Effective One Body (EOB) → inspiral-merger-ringdown

With several EOS models for BNS and NSBH

Veitch et al. (with Christensen!) PRD 91, 042003 $(2015)^{16}$

Parameter estimation: LALInference

Veitch et al. (with Christensen!) PRD 91, 042003 (2015)

Improved skymaps

Sometimes significant improvement

Timeline

Time since gravitational-wave signal

If better skymap and/or classification \rightarrow update

Back to GW170817

Time (seconds)

Back to GW170817

Back to GW170817

22

END

All public O3 events can be found on GraceDB: https://gracedb.ligo.org/superevents/public/O3/

Tutorials and software open source on GWOSC: https://www.gw-openscience.org/about/ (GWOSC: Gravitational Wave Open Science Center)

You can search for GWs signals in actual data from O1 and O2 with \sim one hour training! (and learn in preparation for O3)

THANK YOU