Exploring the metal-poor inner Gallaxy with the $\bigoplus_{\text {RISTINE }}$ survey

Anke Arentsen
 (AIP, Potsdam, Germany)

With: Else Starkenburg (AIP), Nicolas Martin (Observatoire de Strasbourg), Kim Venn (University of Victoria), Dan Zucker (Macquarie University), Andrea Kunder (Saint Martin's University), Vanessa Hill (OCA), Mathias Schultheis (OCA) and the Pristine team

Where are the oldest stars?

Colour-coded by
fraction of old stars

Starkenburg $+17 b$

Where are the oldest stars?

Colour-coded by
fraction of old stars

Starkenburg $+17 b$

The Inner Galaxy

The Inner Galaxy: Boxy, Peanut-shaped Bulge with an X-Shape

B/P Bulges: deformed bars

Martinez-Valpuesta+06

$$
\text { Wegg } \mathcal{E} \text { Gerhard (2013) }
$$

Kinematics: room for a classical bulge?

Cylindrical

 rotationData:
BRAVA survey
(Howard $+08,09$)
Model:
Shen +10

Metallicity distribution

Metallicity Distribution Function (MDF) in the ARGOS red clump survey (Ness + 2013)

(a) $l \pm 15^{\circ}, b=-5^{\circ}$

(b) $l \pm 15^{\circ}, b=-7.5^{\circ}$

(c) $l \pm 15^{\circ}, b=-10^{\circ}$

What about the metal-poor component?

Slight rotation in MP stars (?)
ARGOS data (Ness+13)

What about the metal-poor component?

No signature of rotation in metal-poor BRAVA RR Lyrae stars
(Kunder+16)

Model with ARGOS/APOGEE data

Chemodynamical modelling of the Galactic Bulge and Bar (Portail+2017)

Why look for metal-poor stars in the bulge?

$>$ Find the oldest (metal-poor) stars in the Galaxy
> Need of a larger sample of metal-poor stars to study that component of the bulge

Metal-poor stars

Beers \& Christlieb 2005

$[\mathrm{Fe} / \mathbf{H}]$	Term	Acronym
$>+0.5$	Super metal-rich	SMR
~ 0.0	Solar	-
<-1.0	Metal-poor	MP
<-2.0	Very metal-poor	VMP
<-3.0	Extremely metal-poor	EMP
<-4.0	Ultra metal-poor	UMP
<-5.0	Hyper metal-poor	HMP
<-6.0	Mega metal-poor	MMP

$$
[\mathrm{Fe} / \mathrm{H}]=\log (\mathrm{Fe} / \mathrm{H})_{*}-\log (\mathrm{Fe} / \mathrm{H})_{\odot}
$$

Metal-poor stars

Beers \& Christlieb 2005

$[\mathbf{F e} / \mathbf{H}]$	Term	Acronym
$>+0.5$	Super metal-rich	SMR
~ 0.0	Solar	-
<-1.0	Metal-poor	MP
<-2.0	Very metal-poor	VMP
<-3.0	Extremely metal-poor	EMP
<-4.0	Ultra metal-poor	UMP
<-5.0	Hyper metal-poor	HMP
<-6.0	Mega metal-poor	MMP

$$
[\mathrm{Fe} / \mathrm{H}]=\log (\mathrm{Fe} / \mathrm{H})_{*}-\log (\mathrm{Fe} / \mathrm{H})_{\odot}
$$

Fraction of CEMP ([C/Fe] > +0.7) stars (Lee + 13)

Metal-poor stars with Pristine

Beers \mathcal{E} Christlieb 2005

$[\mathrm{Fe} / \mathbf{H}]$	Term	Acronym
$>+0.5$	Super metal-rich	SMR
~ 0.0	Solar	-
<-1.0	Metal-poor	MP
<-2.0	Very metal-poor	VMP
<-3.0	Extremely metal-poor	EMP
<-4.0	Ultra metal-poor	UMP
<-5.0	Hyper metal-poor	HMP
<-6.0	Mega metal-poor	MMP

$$
[\mathrm{Fe} / \mathrm{H}]=\log (\mathrm{Fe} / \mathrm{H})_{*}-\log (\mathrm{Fe} / \mathrm{H})_{\odot}
$$

CaHK filter @ CFHT

Metal-poor stars with Pristine

Starkenburg $+17 a$

With SDSS

photometry \& CaHK

Metal-poor stars with Pristine

With Gaia DR2

photometry \& CaHK

The metal-poor stars in the bulge

MDF in the SkyMapper/EMBLA survey (Howes+14,15,16) compared to the ARGOS survey (Ness +13)

The metal-poor stars in the bulge

Very few stars!
~ 150 stars $[\mathrm{Fe} / \mathrm{H}]<-2.5$
9 stars $[\mathrm{Fe} / \mathrm{H}]<-3.0$

The metal-poor stars in the bulge

Almost no CEMP stars (3\%)! In the halo it is $\sim 27 \%$ for stars with $[\mathrm{Fe} / \mathrm{H}]<-2.0$

Comparison of the Pristine and SkyMapper filters

SkyMapper Pristine

Pristine in the Bulge

> Using the PanSTARRS1 Bayestar extinction map $($ Green $+15,18)$

We are limited by observing from the North (CFHT)

Pristine in the bulge

Pilot photometry Pristine colour-colour plot with spectroscopic metallicities from EMBLA, ARGOS, APOGEE
broadband photometry from Gaia (with quality cuts)

Pristine in the bulge

Pilot photometry Pristine colour-colour plot with spectroscopic metallicities from EMBLA, ARGOS, APOGEE
broadband photometry from Gaia (with quality cuts)

Pristine in the bulge

Pilot photometry Pristine colour-colour plot with spectroscopic metallicities from EMBLA, ARGOS, APOGEE
broadband photometry from Gaia (with quality cuts)

Low-/intermediate resolution follow-up

~6000 stars
AAT/AAOmega +2 dF
(400 fibres in 2 degree field)

$$
\begin{aligned}
& \mathrm{R} \sim 1300 \text { in blue arm } \\
& \mathrm{R} \sim 10000 \text { in red }(\mathrm{CaT})
\end{aligned}
$$

Low-/intermediate resolution follow-up

Teff, logg, $[\mathrm{Fe} / \mathrm{H}]$ and $[\mathrm{C} / \mathrm{Fe}]$

Low-/intermediate resolution follow-up

Radial velocities, metallicities
(\& some abundances?)

Low resolution follow-up

Full spectrum fitting of the blue spectra using
the empirical MILES library with the ULySS fitting code (Koleva+09)
$>$ Teff, logg \& $[\mathrm{Fe} / \mathrm{H}]$ down to $[\mathrm{Fe} / \mathrm{H}]=-2.8$

Low resolution follow-up

Metallicity Distribution Function of our sample

Low resolution follow-up: metal-poor tail \& [C/Fe] ЭRISTINE

Low- $[\mathrm{Fe} / \mathrm{H}]$ tail and $[\mathrm{C} / \mathrm{Fe}]$ are still work in progress, using the synthetic CRUMP library with FERRE (Allende Prieto+06)
$>$ below $[\mathrm{Fe} / \mathrm{H}]=-2.0$ (down to -6.0)

Metallicity Distribution Function of our sample

A closer look at the selection

A closer look at the selection

A closer look at the selection

for regions with
$|\mathrm{b}|>7$
(EBV from 0.2-0.5)
(dereddened using PanSTARRS
Bayestar extinction map)

for regions with
$|\mathrm{b}|>7$
(EBV from $0.2-0.5$)
(dereddened using
PanSTARRS
Bayestar extinction map)

All follow-up: Gaia DR2 photometry

All follow-up: PanSTARRS DRl photometry

PanSTARRS DRl photometry: efficiency

PanSTARRS DRl photometry: efficiency

Kinematics of the Pristine stars

Kinematics of the Pristine stars

MDF

Kinematics of the Pristine stars

Kinematics of the Pristine stars

Pristine $-1.5<[\mathrm{Fe} / \mathrm{H}]<-1.0$

Kinematics of the Pristine stars

$$
-1.5<[\mathrm{Fe} / \mathrm{H}]<-1.0 \quad-2.0<[\mathrm{Fe} / \mathrm{H}]<-1.5 \quad-2.0<[\mathrm{Fe} / \mathrm{H}]<-3.0
$$

$$
\begin{array}{ll}
\diamond & +4.0<b<+6.0 \\
0 & -2.0<b<-5.0 \\
\square & -5.0<b<-8.0 \\
\text { 为 } & -8.0<b<-11.0
\end{array}
$$

Kinematics of the Pristine stars: rotation?

(model: Shen +10 for [metal-rich] BRAVA giants)

Kinematics of the Pristine stars: rv dispersion

Johnson+13 (3 outer bulge fields)

Ness +13 (ARGOS fields)

Kinematics of the Pristine stars: rv dispersion

$$
\text { Ness }+13
$$

(ARGOS fields)

- We can effectively select metal-poor stars in the Bulge with Pristine \& Gaia/PanSTARRS
- Spectroscopic follow-up has been successful

Summary

- We can effectively select metal-poor stars in the Bulge with Pristine \& Gaia/PanSTARRS
- Spectroscopic follow-up has been successful

Work in progress!

- kinematics
> fraction of carbon-enhanced metal-poor stars
> study some (very) metal-poor stars in detail (select for high-res follow-up)

