Spin alignment of stars in old open clusters

Astre Flt 2

ENRICO CORSARO
Marie Sklodowska-Curie Fellow AstroFlt2
INAF - Osservatorio Astrofisico di Catania
D) Lamonds"

YUEH-NING LEE, RAFAEL A. GARCÍA, PATRICK HENNEBELLE, SAVITA MATHUR, PAUL G. BECK, STEPHANE MATHIS, DENNIS STELLO \& JEROME BOUVIER

OUTLINE

PART.I

- Star and Stellar Cluster formation

PART 11

Stellar oscillations

PART III
Observations, analysis \& new results

PART I
STAR AND STELLAR
CLUSTER FORMATION

INTRODUCTION

STAR FORMATION

- Fundamental problem in Astrophysics SHU ET AL. 1987; MCKEE \& OSTRIKER 2007
- Gravitational collapse of turbulent molecular clouds (MC)
- Physical and chemical properties and dynamics of star forming regions (SFR)
- Origin of stellar mass distribution (IMF)
- Star and planet formation rates

BARNARD 68 DARK CLOUD. © ESO

- Link to stellar evolution and planet formation
- Formation, structure, and evolution of galaxies

Very difficult to access:

- SFR are dense and obscured by dust (only IR and Radio)

- MC change density by 10 orders - Hierarchical step approaches required

INTRODUCTION

MASSIVE SFR

- Star formation very diffused in Galaxy
- ~1300 massive SFR identified with IR, sub-mm, radio surveys across inner Galaxy URQUHART ET AL. 2014

ATLASGAL © URQUHART ET AL. 2014

- Half star formation in Milky Way occurring in 24 giant MC (up to $10^{7} \mathrm{M}_{\text {sun }}$ each)

LEE ET AL. 2012; LONGMORE ET AL. 2014

PROTO-CLUSTERS

- Giant MC can form hundreds of proto-clusters each with up to 10^{5} Msun (many Jeans masses!)
IMMER AL. 2012; LONGMORE ET AL. 2012
- Stellar clusters are common and likely to form (high mass clumps)
- Understand cluster formation is critical to understand star formation
- Sun and Solar System likely originated from a cluster ADAMS 2010

BENCHMARKS OF STAR FORMATION OPEN CLUSTERS

- Open clusters (OC) important:

LADA \& LADA 2003; LONGMORE ET AL. 2014

- Can be observed in multi bands because no or little ISM (not embedded)
Not possible in SFR because covered by dust

OPEN CLUSTER NGC 265 © NASA/ESA

- Stars are sparse ($\sim 1 \mathrm{M}_{\text {sun }} \mathrm{pc}^{-3}$) —> precise follow-up studies possible Not possible in e.g. Globular Clusters, too dense!
- Stars in cluster can preserve imprint of initial cdts of progenitor MC Not possible with field stars because from dissolved small stellar systems

STELLAR CLUSTERS AND 3D SIMULATIONS
 IMPRINT OF INITIAL CONDITIONS?

- 3D numerical simulations of MC collapse and cluster formation to study morphology and dynamics BATE ET AL. 2009; KUZNETSOVA ET AL. 2015
- Stars can form either isolated, in filaments or in clusters (more common)
- Kinematic signatures of MC might not live long enough to be observed

STELLAR CLUSTERS AND 3D SIMULATIONS

CLOUD'S ANGULAR MOMENTUM

- From 3D MHD simulations of proto-cluster formation LEE \& HENNEBELLE 2016

$$
E_{\mathrm{kin}}=E_{\mathrm{tur}}+E_{\mathrm{rot}} \quad E_{\mathrm{rot}}<\frac{1}{2} E_{\mathrm{tur}}
$$

- Angular momentum from the cloud is not efficiently passed to stars
- Less general cloud's rotation at scales of forming stars (several AU)

PROTO-CLUSTER FORMATION © LEE \& HENNEBELLE 2016

CLOUD'S ANGULAR MOMENTUM

OBSERVATIONAL RESULTS

- Evolution of cloud's AM not well understood
E.G. SHU, ADAMS \& LIZANO 1987; DONG LAI 2014
- Stellar-spin axis randomly distributed in nearby OC Pleiades and
Alpha Persei (d ~ 150 pc, Age~80 Myr) JACKSON \& JEFFRIES 2010
- Clouds' average AM scrambled by turbulence at different scales

- Imprint of cloud's global rotation lost during star formation

Turbulence fields counteract cloud's global rotation in producing spin alignment

CLOUD'S ANGULAR MOMENTUM
 OBSERVATIONAL LIMITATIONS

- Observational technique requires combination of several observations: JACKSON \& JEFFRIES 2010
- $P_{\text {rot }}$ from light curve spot modulation (active stars!)
- v sini measurement from spectroscopic observations
- stellar radius R from cluster distance + angular diameter

- cluster distance from parallax (Hipparcos)
- angular diameter from magnitude (de-reddened) + color index relation recalibrated with interferometry on MS and SG stars KERVELLA ET AL. 2004

$$
\sin i=\frac{v \sin i P_{\mathrm{rot}}}{2 \pi R}
$$

Only young active stars possible Strong sensitivity to cluster distance Prone to large systematics

PART II

STELLAR OSCILLATIONS

PROBING THE INTERIOR OF STARS
ASTEROSEISMOLOGY

- Most stars with M ~ 1-3 $\mathrm{M}_{\text {sun }}$ oscillate like the Sun (helioseismology)
CHRISTENSEN-DALSGAARD 1987
- ~ 100 K known today
- Space missions MOST, CoRoT, NASA's Kepler \& K2
- More to follow: NASA TESS, ESA PLATO space missions

Probing the interior of stars
 SOLAR-LIKE OSCILLATIONS

Acoustic waves (\mathbf{p} modes) propagate in outer CZ

[^0]
PROBING THE INTERIOR OF STARS

SOLAR-LIKE OSCILLATIONS

- Produce tiny brightness variations (from few ppm to ppt) in light curve
- Fourier analysis (Power Spectrum) reveals Gaussian envelope of oscillations

$$
\nu_{\max } \propto g / \sqrt{T_{\mathrm{eff}}}
$$

© VIRGO/SPM ONBOARD SOHO

PROBING THE INTERIOR OF STARS

OSCILLATION MODES

- Oscillation mode identified by 3 quantum numbers (n, ℓ, m, for spherical harmonic)
- Surface distribution depends on oscillation mode

SOLAR
 OSCIDIONS

n ~ 10-20

$\ell=3, m=1$

© BECK \& KALLINGER, 2013 S\&W

PROBING THE INTERIOR OF STARS

ASYMPTOTIC PATTERN

- When radial order $\boldsymbol{n} \gg 1$, regime becomes asymptotic

$$
\begin{gathered}
\nu_{\max } \propto g / \sqrt{T_{\mathrm{eff}}} \\
\Delta \nu \propto \bar{\rho}
\end{gathered}
$$

- Modes with same angular degree ℓ are equally spaced in frequency
- Large frequency separation Δv probes
 mean stellar density

n ~ 10-20

© BEDDING, KJELDSEN ET AL. 2003

PROBING THE INTERIOR OF STARS

DETAILED MODE PROPERTIES

- Each oscillation mode is characterized by 3 parameters
- An individual PS can require hundreds of free parameters to be modeled

Damped oscillation

$$
\begin{aligned}
& T_{\text {obs }} \gg \tau \\
& \Gamma \propto \tau^{-1}
\end{aligned}
$$

ν_{0}, Γ, H

EVOLVED SOLAR-TYPE STARS
RED GIANTS

Main Sequence Hydrogen core fusion

He fusion
($\mathrm{He} \Rightarrow \mathrm{C}$)

Hydrogen core

$$
(\mathrm{H} \Rightarrow \mathrm{He})
$$

Hydrogen shell fusion Red Giant Branch
© THOMAS KALLINGER

EVOLVED SOLAR-TYPE STARS

RG OSCILLATIONS

- Giants are very luminous: can be observed more far away than MS (dwarfs)
- Useful for Galactic Archeology: map Galaxy structure and evolution, Globular Clusters MIGLIO ET AL. 2013, 2016
- Solar-like oscillations in outer CZ

- Couple with gravity waves from RZ
- Dipole ($\ell=1$) mixed modes observable, with both g - and p - character

EVOLVED SOLAR-TYPE STARS MIXED MODES PATTERN

MEASURING STELLAR AM INTERNAL ROTATION

MEASURING STELLAR AM

SPIN INCLINATION ANGLE

- Stellar oscillations accurately probe rotation rate and spin axis inclination
GIZON \& SOLANKI 2003; BALLOT ET AL. 2006; BECK ET AL. 2012 NATURE; DEHEUVELS ET AL. 2012; HUBER ET AL. 2013 SCIENCE
- Rotational degeneracy of $\ell=1$ (dipolar) modes gives $(2 \ell+1) \mathrm{m}$ components

DIPOLAR OSCILLATION MODE SPLIT BY ROTATION

Credit: E. Corsaro

High angles are easier to observe (projection effect from 3D space)

$$
d \Omega=\sin (\theta) d \theta
$$

3D RANDOM DISTRIBUTION

© GIZON \& SOLANKI 2003

© CORSARO ET AL., NATURE ASTRONOMY, 2017

MEASURING STELLAR AM

DEGREE OF SPIN ALIGNMENT

3D RANDOM DISTRIBUTION

3D Random

$$
\alpha=\frac{1}{N} \sum_{i=1}^{N} \cos ^{2}\left(\theta_{i}\right)
$$

$$
\alpha=\frac{1}{3}
$$

Projected spin inclination θ

PART III
OBSERVATIONS,
ANALYSIS \& NEW RESULTS

SPACE MISSION

NASA KEPLER

- Launched 2009 - End nominal mission in 2013
- Mission devoted to exoplanets discovery
- 150,000 stars observed in the Cygnus - Lyra constellations
- Kepler photometric band: $430-890$ nm

OC FROM NASA'S KEPLER MISSION

OBSERVATIONAL PROPERTIES

NGC 6791

- Total mass ~ $5000 \mathrm{M}_{\text {sun }}$ PLATAIS ET AL. 2011
- Distance ~ 4187 pc BASU ET AL. 2011
- Size ~ 10 pc

NGC 6819

- Total mass ~ $2600 \mathrm{M}_{\text {Sun }}$ KALIRAI ET AL. 2001
- Distance ~ 2344 pc BASU ET AL. 2011
- Size ~ 7 pc

4 YEARS PHOTOMETRY

- Age ~ 2.4 Gyr BREWER ET AL. 2016
- $\mathrm{M}_{\mathrm{RG}} \sim 1.7 \mathrm{M}_{\text {Sun }}$ MIGLIO ET AL. 2012
- Class: 11 m

OC FROM NASA'S KEPLER MISSION

GALACTIC POSITIONS

NGC 6791
Gal. lat. 10.9°
Gal. long. 69.95°
h ~ 700 pc
NGC 6819
Gal. lat. 8.5°
Gal. long. 73.98°
h ~ 300 pc
$h_{\text {thin disk }} \sim 350 \mathrm{pc}$
Annotated Roadmap to the Milky Way
[artist's concept]

TARGET SELECTION

CLUSTER RED GIANTS

- 48 cluster red giants with clear evolutionary stage from period
 spacing of $\ell=1$ mixed modes $\Delta \Pi_{1} \quad$ corsaro et AL. 2012;

EVOLUTIONARY STAGE OF RED GIANTS © CORSARO ET AL. 2012

ANALYSIS OF STELLAR OSCILLATIONS

- Bayesian inference code DIAMONDS: public code https://github.com/EnricoCorsaro/DIAMONDS CORSARO \& DE RIDDER, 2014, A\&A, 571, 71 CORSARO, DE RIDDER, GARCIA, 2015, A\&A, 579, 83
- Background signal modeled with granulation and mesogranulation components in 48 cluster red giants

© CORSARO \& DE RIDDER, 2014 CORSARO ET AL. 2017, IN PREP.

ANALYSIS OF STELLAR OSCILLATIONS

BAYESIAN PEAK BAGGING

- 3900 oscillation modes fitted and identified from 48 red giant stars in NGC 6791 and NGC 6819
corsaro et Al. 2016, IN prer.
- 380 rotationally split $\ell=1$ mixed modes used to measure spin-axis inclinations

© CORSARO ET AL. 2015
- Only significant peaks considered with peak significance test
- Bayesian model comparison with Bayesian evidence computed with DIAMONDS
$\mathcal{E}_{1} / \mathcal{E}_{2} \simeq 150$

ANALYSIS OF STELLAR OSCILLATIONS

MEASURING STELLAR-SPIN INCLINATIONS

OBSERVATIONAL RESULTS

- Strong spin alignment in both clusters!

$$
\alpha \simeq 0.75
$$

ORIGIN OF SPIN ALIGNMENT N-BODY INTERACTIONS?

- N-body simulations for old open clusters can reproduce observed populations of single and multiple stars
GELLER ET AL. 2013
- Individual stars undergo spin down over time: magnetic braking, stellar winds, tidal friction MEIBOM ET AL. 2011 NATURE; VAN SADERSETAL. 2016 NATURE
- Main force influencing spin orientation and orbital configuration is tidal
- But OC stars are sparse ($\sim 1 \mathrm{M}_{\text {sun }} \mathrm{pc}^{-3}$) LADA \& LADA 2003
- Tidal forces among stars are negligible already over a few $\mathrm{AU}\left(\sim 10^{-5} \mathrm{pc}\right)$ and on given timescales HUT 1981

$$
\begin{aligned}
& F_{\text {tidal }} \propto r^{-3} \\
& \frac{d \theta}{d t} \propto\left(\frac{R}{a}\right)^{6}
\end{aligned}
$$

- Spin alignment possible only during cluster formation epoch
- MC is treated as compressible fluid and evolution resolved with NavierStokes equations
- RAMSES: 3D MHD code with adaptive mesh refinement TEYSSIER 2002; FROMANG ET AL. 2006
- Compact ($\sim 0.2 \mathrm{pc}$) and dense $\left(10^{7} \mathrm{H}_{2} \mathrm{~cm}^{-3}\right) \mathrm{MC}$ with $10^{3} \mathrm{M}_{\text {sun }}$ and isothermal at $\mathrm{T}=10 \mathrm{~K}$
LeE \& hennebelle 2016
- Bonnor-Ebert-like spherical MC with density profile
$\rho(r)=\rho_{0}\left[1+\left(\frac{r}{r_{0}}\right)^{2}\right]^{-1}$

3D HYDRODYNAMICAL SIMULATIONS
 PROTO-CLUSTER FORMATION

- Evolution by gravitational collapse + turbulent velocity field (Kolmogrov spectrum) + solid body global rotation
- Sink particles algorithm used to add AM from gas to sink (pre-stellar cores): track evolution of AM at scales of several AU

3D hydrodynamics

PROTO-CLUSTER FORMATION
3D SIMULATION RESULTS

- If cloud rotation absent or low: no spin alignment (random)

$E_{\text {rot }} / E_{\text {tur }}<1$

- If strong cloud rotation present: significant spin alignment

$E_{\text {rot }} / E_{\mathrm{tur}} \simeq 1$

- Stars with $\mathbf{M}<0.7 \mathbf{M}_{\text {sun }}$ show no alignment even with strong rotation

PROTO-CLUSTER FORMATION
 3D SIMULATION RESULTS

PROTO-CLUSTER FORMATION 3D SIMULATION RESULTS

Sink particles simulate pre-stellar cores

PROTO-CLUSTER FORMATION
3D SIMULATION RESULTS

© CORSARO ET AL., NATURE ASTRONOMY, 2017

SUMMARY \& CONCLUSIONS

Direct observations

Detection through asteroseismology

Proto-cluster has strong rotational energy component

Proto-cluster AM efficiently passed down to individual stars

Imprint of cloud's global rotation has survived for more than 8 Gyr!

[^1]$$
E_{\mathrm{rot}} \gtrsim E_{\mathrm{tur}}
$$

Proto-cluster

$$
M \geq 0.7 M_{\odot} \quad \text { Stars }
$$

FUTURE PROSPECTS

- Enlarge the sample of open clusters, e.g. M44 and M67 with NASA K2
- Possibly include globular clusters with future space missions NASA TESS and ESA PLATO using asteroseismology
- Compare with astrometric and kinematic observations from ESA Gaia to study global rotation properties in clusters
- Extend study using standard methods from v sini using spectroscopic surveys for accessible open clusters from e.g. APOGEE, Gaia ESO
- Search for prototypes of forming regions in IR with strong rotational components using JWST and ground facilities such as GIARPS@TNG

We can use detailed asteroseismology
(coupled with simulations)
to probe the physics of star and stellar cluster formation!

Thank you!

ENRICO CORSARO

[^0]: © CREDIT: GABRIEL PEREZ DIAZ, IAC (MULTIMEDIA SERVICE)

[^1]: $E_{\text {tur }}>2 E_{\text {rot }} \quad$ Proto-cluster
 $E_{\mathrm{kin}}=E_{\mathrm{tur}}+E_{\mathrm{rot}}$

