
ARTICLE IN PRESS

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

JID:MATPUR AID:103877 /FLA [m3L; v1.381] P.1 (1-42)

J. Math. Pures Appl. ••• (••••) ••••••

Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

journal homepage: www.elsevier.com/locate/matpur

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Singular limits of anisotropic weak solutions to compressible

magnetohydrodynamics

Nicolas Besse a,∗, Christophe Cheverry b

a Laboratoire J.-L. Lagrange, Observatoire de la Côte d’Azur, Université Côte d’Azur, Bvd de
l’Observatoire CS 34229, 06304 Nice Cedex 4, France
b Institut de Recherche Mathématique de Rennes, Université de Rennes, Campus de Beaulieu, 263 avenue
du Général Leclerc CS 74205, 35042 Rennes Cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 June 2025
Available online xxxx

MSC:
35K67
35K45
35B25
35B40
35Q35
35Q85
35Q60
76M45
76W05

Keywords:
Parabolic systems of conservation
laws
Singular limit of nonlinear PDEs
Magnetohydrodynamics
Fusion plasmas
Weak solutions of dissipative PDEs
Large magnetic field
Spatial anisotropy

The aim is to justify rigorously the so-called reduced magnetohydrodynamic model
(abbreviated as RMHD), which is widely used in fusion, space and astrophysical
plasmas. Motivated by physics, the focus is on plasmas that are simultaneously
strongly magnetized and anisotropic. We consider conducting fluids that can be
described by viscous and resistive barotropic compressible magnetohydrodynamic
equations. The purpose is to study the asymptotic behavior of global weak solutions,
which do exist, for strongly anisotropic plasmas such as the large aspect ratio
framework. We prove that such anisotropic weak solutions converge to the weak
solutions of the RMHD equations. Rigorous justification of this limit is performed
both in a periodic domain and in the whole space. It turns out that the resulting
system is incompressible only in the perpendicular direction to the external strong
magnetic field, whereas it involves compressible features in the parallel direction. In
order to pass to the singular limit in the perpendicular direction we exploit, among
others, tools elaborated for proving the low Mach number limit of compressible
neutral fluid flows such as, here, the introduction of a fast oscillatory unitary group
associated to the dynamics of transverse fast magnetosonic waves. In the parallel
direction, we bring out compactness arguments and particular cancellations coming
from the structure of our equations.

© 2026 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, AI training, and similar technologies.

r é s u m é

L’objectif de ce travail est de justifier rigoureusement le modèle de la magnétohydro-
dynamique réduite (en abrégé RMHD) qui est abondamment utilisé dans les plasmas
de fusion, spatiaux et astrophysiques. Motivés par des considérations physiques,
nous nous concentrons sur des plasmas qui sont à la fois fortement magnétisés et
anisotropes. Plus précisément, nous considérons des fluides conducteurs qui peuvent
être décrits par les équations de la magnétohydrodynamique compressible barotrope,
visqueuse et résistive. Le but est alors d’étudier le comportement asymptotique
des solutions faibles globales, qui existent, pour des plasmas fortement anisotropes
tels que ceux à grand rapport d’aspect. Nous prouvons que ces solutions faibles
anisotropes convergent vers les solutions faibles des équations de la RMHD. Une
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justification rigoureuse de cette limite est effectuée à la fois sur un domaine
périodique et dans l’espace entier. Il s’avère que le système limite obtenu n’est
incompressible que dans la direction perpendiculaire au champ magnétique fort
externe, tandis qu’il présente des caractéristiques compressibles dans la direction
parallèle. Afin de passer à la limite singulière dans la direction perpendiculaire, nous
exploitons, entre autres, des outils élaborés pour prouver la limite de faible nombre
de Mach des écoulements de fluides neutres compressibles, tels qu’ici l’introduction
d’un groupe unitaire, fortement oscillant, associé à la dynamique des ondes magnéto-
soniques transverses rapides. Dans la direction parallèle, nous mettons en oeuvre
des arguments de compacité et des compensations particulières provenant de la
structure des équations.

© 2026 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, AI training, and similar technologies.
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1. Introduction

Equations of reduced magnetohydrodynamics, hereafter abbreviated as RMHD, are extensively used in

fusion, space and astrophysical plasmas. They are highly prized by plasma physicists for the following

reasons. First, they allow interesting theoretical and analytical developments; second they are the source

of numerically tractable models which are used to bring forth codes that are routinely exploited [3,10,32,

36–39]. The RMHD model was introduced in the seventhies [26,48] in the context of fusion plasmas. It

was followed by many systematic studies and generalizations including more and more physical effects and

refinements [12,13,22,24,29,32,49,51,52]. At present, there is a vast literature about formal derivations and

applications of RMHD models. The two references [4,41] are good introductions to the subject, with many

references. RMHD equations are still a very active research field, including recent progress in extended

magnetohydrodynamics [1]. At the same time, the work [2] has highlighted the importance and the inherent

difficulties of working under anisotropic conditions.

1.1. The penalized system

Let Ω be a three-dimensional domain, which is either the periodic box 𝕋3 := (ℝ/2πℤ)3 or the whole

space ℝ3. The time evolution on Ω of plasmas is basically described by isentropic compressible magneto-

hydrodynamics. The unknowns are made of the fluid density ρ ∈ ℝ+, the fluid velocity v ∈ ℝ3 and the

magnetic field B ∈ ℝ3. Including viscous (µ > 0 and λ > 0) and resistive (η > 0) effects, we consider on

ℝ+ × Ω the system of MHD equations

⎧
⎪⎪⎨
⎪⎪⎩

∂tρ+ ∇ · (ρ v) = 0 ,

∂t(ρ v) + ∇ · (ρ v ⊗ v) + ∇p + B × (∇ × B) − µ∆v − λ∇(∇ · v) = 0 ,

∂tB + ∇ × (B × v) − η∆B = 0 ,

(1)
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together with the divergence-free condition ∇ · B = 0 and the barotropic state law p = 𝔞ργ , where 𝔞 > 0

and γ > 1. The symbol × denotes the cross product of vectors of ℝ3, while the symbol ⊗ stands for the

tensor product of vectors. Given (n,m) ∈ ℕ2
∗, we take the convention

(︁
∇ · (u⊗ v)

)︁
i

=
n∑︂

j=1

∂j(uivj) , u = t(u1, · · · , um) ∈ ℝm , v = t(v1, · · · , vn) ∈ ℝn .

Following preceding results about compressible Navier–Stokes equations [15,33], the existence of global (in

time) weak solutions to system (1) has been obtained in [23]. Now, most plasmas are magnetized. This

means that B is, in a first rough approximation, a given external non-zero magnetic field Be. For simplicity,

we assume that Be is constant. After rotation, it can always be adjusted in such a way that Be = B e

with B ∈ ℝ∗
+ and e := t(0, 0, 1). The direction e is called parallel. Given a vector field like B (or v),

we can decompose B into its parallel component B = B3 := B · e ∈ ℝ and its perpendicular component

B⊥ := t(B1,B2) ∈ ℝ2 so that B = t(tB⊥,B ). We work away from vacuum, near a constant density which

can always be put in the form B
2 ρ for some ρ ∈ ℝ∗

+. Observe that (B2 ρ, 0,Be) is a constant solution to

(1). Motivated by physics, particularly by considerations of large aspect ratio and geometrical optics (see

Section 3), we incorporate a strong spatial anisotropy. More precisely, we keep x⊥ := (x1, x2) = x⊥ = (x1, x2)

and we replace the vertical direction by x = x3 := ε x3 with 0 < ε ≪ 1. The above gradient operator

becomes

∇ε := t(t∇⊥, 0) + ε∇ , ∇⊥ := t(∂1, ∂2) , ∇ := e ∂ , ∂ ≡ ∂3 . (2)

Accordingly, a distinction must be drawn between ∆⊥ := ∂2
11 + ∂2

22 and ∆ := ∂2
33. We want to study

the behavior at large time scales t := ε t ∼ 1 of small perturbations, of size ε, of the stationary solution

(B2 ρ, 0,Be). To this end, we seek solutions in the form

(ρ, v,B)(t, x) =
(︁
B

2 ρε, ε vε, B (e + εBε)
)︁
(εt, x1, x2, εx3) .

The unknowns are now (ρε, vε, Bε)(t, x), while the pressure is given by pε = a (ρε)γ , with a = B
2(γ−1)𝔞.

Then, the system (1) can be reformulated according to the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
ε + ∇ε · (ρεvε) = 0 ,

∂t(ρ
εvε) + ∇ε · (ρεvε ⊗ vε) +

1

ε2
∇εp

ε +
1

ε
(e + εBε) × (∇ε ×Bε)

− µε
⊥∆⊥v

ε − µε∆ vε − λε∇ε(∇ε · vε) = 0 ,

∂tB
ε +

1

ε
∇ε ×

(︁
(e + εBε) × vε

)︁
− ηε

⊥∆⊥B
ε − ηε∆ Bε = 0 ,

(3)

together with

∇ε ·Bε = 0 . (4)

Without loss of generality, just to simplify the presentation, we can work with ρ = 1. The second equation

(for the momentum ρεvε) in (3) indicates that ρε should be like ρε = ρ + 𝒪(ε). With this in mind, we can

introduce the new state variable ϱε as indicated below, and expand pε in powers of ε to obtain

ρε = 1 + ε ϱε , pε = a+ εpε + 𝒪(ε2) , p
ε := b ϱε , b := a γ . (5)

To see the heuristics which lead to our model, it is instructive to interpret (3) in terms of (ϱε, vε, Bε), and

then to extract the singular part. We find
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tϱ
ε +

1

ε
∇⊥ · vε

⊥ = 𝒪(1) ,

∂tv
ε
⊥ +

1

ε
∇⊥(pϵ +Bε) = 𝒪(1) , ∂tv

ε = 𝒪(1) ,

∂tB
ε +

1

ε
∇⊥ · vε

⊥ = 𝒪(1) , ∂tB
ε
⊥ = 𝒪(1) .

(6)

According to the terminology of Schochet [45], the asymptotic regime is called:

• slow when the first-order time derivative of the solution remains bounded uniformly with respect to the

small paramater ε (as ε → 0). In view of (6), this means that

∇⊥ · vε
⊥ = 𝒪(ε) , ∇⊥(pϵ +Bε) = 𝒪(ε) . (7)

• fast when it is not slow. In this case, rapid oscillations with non-vanishing amplitudes can persist on a

long time scale, preventing the convergence in a usual strong sense. Since the singular part involves the

sole action of the operator ∇⊥, it induces a propagation which can only be achieved with respect to the

perpendicular direction. Then, because Alfvén waves do not propagate in the directions orthogonal to

the ambiant magnetic field (here e ), we are necessarily concerned with transverse fast magnetosonic

waves. This claim is justified in Section 3.1, where the eigenmodes of the linear (singular) system (6)

are investigated.

At time t = 0, we start with

ρε
|t=0 = ρε

0 , vε
|t=0 = vε

0 , Bε
|t=0 = Bε

0 . (8)

In coherence with (4), we must impose ∇ε ·Bε
0 = 0. The initial data is said to be prepared when

∇⊥ · vε
0⊥ = 𝒪(ε) , ∇⊥(b ϱϵ

0 +Bε
0 ) = 𝒪(ε) . (9)

At this stage, it should be noted that the structure of the penalized terms inside (6) and of the subsequent

condition (7) are different from isotropic situations [25]: the fluid should be almost incompressible only in

the perpendicular direction (the action of the operator ∇⊥ appears in place of the full gradient ∇); the

components ϱϵ
0 and Bε

0 must be approximately linked together. To our knowledge, the asymptotic study

of systems like (3) has not yet been undertaken neither in a smooth context or for weak solutions.

From now on, we assume that the positive perpendicular and parallel shear viscosities µε
⊥ > 0 and µε > 0,

as well as the positive bulk viscosity λε > 0 are adjusted in such a way that

µε
⊥ −−→ µ⊥ > 0 , µε −−→ µ > 0 , λε −−→ λ > 0 , as ε −−→ 0+ . (10)

Similarly the positive perpendicular and parallel resistivities ηε
⊥ > 0 and ηε > 0 must satisfy

ηε
⊥ −−→ η⊥ > 0 , ηε −−→ η > 0 , as ε −−→ 0+ . (11)

The system (3) is equipped with a conserved energy. We mainly assume that the energy of the initial data

(ρε
0, v

ε
0, B

ε
0) is bounded uniformly with respect to ε, see (27) and (36). We add technical conditions which are

distinct when Ω = 𝕋3 (Subsection 2.3) and when Ω = ℝ3 (Subsection 2.4) to guarantee that the difference

ρε
0 − 1 vanishes in Lγ

loc(Ω) when ε goes to zero. Then, up to a subsequence and at least in a weak sense

(specified further), we have



ARTICLE IN PRESS

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

JID:MATPUR AID:103877 /FLA [m3L; v1.381] P.5 (1-42)

N. Besse, C. Cheverry / J. Math. Pures Appl. ••• (••••) •••••• 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ϱϵ
0 :=

ρε
0 − 1

ε
−−⇀ ϱ0 , vε

0 −−⇀ v0 ∈ L2 , Bε
0 −−⇀ B0 ∈ L2 , as ε −−→ 0+ .

We will show (Theorems 1 and 2) that, always up to a subsequence, the difference ρε − 1 vanishes strongly

in L∞
loc(ℝ+;Lγ

loc(Ω)) and that, at least in a weak sense, we have1

ϱϵ :=
ρε − 1

ε
−−⇀ ϱ , vε −−⇀ v , Bε −−⇀ B , as ε −−→ 0+ .

The next stage is to identify the limit (ϱ, v,B).

1.2. The RMHD model

The perpendicular component B⊥ := t(B1, B2) ∈ ℝ2 of B and the perpendicular component v⊥ :=
t(v1, v2) ∈ ℝ2 of v can be identified independently by solving the following nonlinear closed system

{︄
∂tB⊥ − ∂ v⊥ + ∇⊥ · (B⊥ ⊗ v⊥ − v⊥ ⊗B⊥) − η⊥∆⊥B⊥ − η ∆ B⊥ = 0 ,

∂tv⊥ − ∂ B⊥ + ∇⊥ · (v⊥ ⊗ v⊥ −B⊥ ⊗B⊥) + ∇⊥π− µ⊥∆⊥v⊥ − µ ∆ v⊥ = 0 ,
(12)

together with the (transverse velocity) divergence-free condition

∇⊥ · v⊥ = 0 , (13)

and the initial data

(B⊥, v⊥)|t=0 = (ℙ⊥B0⊥,ℙ⊥v0⊥) ∈ L2(Ω;ℝ4) , (14)

where the projection ℙ⊥ denotes the (two-dimensional) transverse Leray operator. Passing to the weak limit

in ∇ε · Bε
0 = 0, we can easily infer that ∇⊥ · B0⊥ = 0, and therefore B0⊥ = ℙ⊥B0⊥. The same applies

concerning vε
0 in the case of prepared data. For unprepared data vε

0, in general, we find that v0⊥ ̸= ℙ⊥v0⊥.

Still, we will show in Section 4.5 that the limit initial condition is ℙ⊥v0⊥ and not v0⊥. This passage from

v0⊥ to ℙ⊥v0⊥ reveals the underlying presence of a time boundary layer (which may arise in the absence

of preparation). In the second equation of (12), the pressure π plays the role of a Lagrange multiplier to

ensure the transverse incompressibility of the flow. Since

∇⊥ · (B⊥ ⊗ v⊥ − v⊥ ⊗B⊥) = t
(︁
∂2(B1 v2 − v1 B2),−∂1(B1 v2 − v1 B2)

)︁
,

exploiting (13), we can assert that

∂t(∇⊥ ·B⊥) − η⊥∆⊥(∇⊥ ·B⊥) − η ∆ (∇⊥ ·B⊥) = 0 .

It follows that the divergence-free condition on B0⊥ is propagated. Retain that

∇⊥ ·B⊥ = 0 . (15)

The existence of global-in-time weak solutions to (12)-(13)-(14) can be obtained from classical methods in

[14,42]. Note that it can be deduced indirectly from the existence (for all ε > 0) of weak solutions to (3).

Indeed, as will be seen, the rigorous justification of the passage to the limit (ε → 0) in the system (3)

1 In the periodic case, let ρε
0 be the constant (close to 1) defined by (28). When Ω = 𝕋

3, as stated in Theorem 1, the definition
of ϱϵ should be replaced by ϱϵ := (ρε − ρε

0)/ε.
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provides another way to construct global weak solutions of (12)-(13)-(14). Observe also that the system

is linear in the parallel direction. Thus, these global existence results remain true even when η = 0 and

µ = 0.

Now, the treatment of the parallel components (B , v ) differs completely from what is done usually.

This is due to the (unconventional) anisotropic context which forces to look at (Bε, vε) separately. On the

one hand, (Bε, vε) appears as a leading order term, and therefore its weak limit (B , v ) must contribute

to the main description of the flow. As such, it must be incorporated in the RMHD model. On the other

hand, to some extent, (Bε, vε) is (partly) dealt in the equations as a second order term. It follows that the

determination of its weak limit (B , v ) is decoupled from the one of (B⊥, v⊥). In fact, knowing the content

of (B⊥, v⊥), with the constant c := 1 + (1/b) > 1, we have access to (B , v ) through

{︄
c
(︁
∂tB + (v⊥ · ∇⊥)B

)︁
− ∂ v − (B⊥ · ∇⊥)v − η⊥∆⊥B − η ∆ B = 0 ,

∂tv + (v⊥ · ∇⊥)v − ∂ B − (B⊥ · ∇⊥)B − µ⊥∆⊥v − µ ∆ v = 0 ,
(16)

and the initial data

(B , v )|t=0 = (B0 , v0 ) , B0 := (B0 − ϱ0)/c . (17)

This is the viscous version of a symmetric linear system involving the known variable coefficients v⊥ and B⊥.

For smooth data v⊥ and B⊥, the global existence is obvious. Moreover, due to (13) and (15), usual energy

estimates concerning (B , v ) do apply without consuming any regularity on v⊥ and B⊥. It follows that

global solutions do exist even when the coefficients v⊥ and B⊥ are issued from the weak solution (v⊥, B⊥)

in L∞
loc(ℝ+;L2(Ω)) ∩ L2

loc(ℝ+, Ḣ
1(Ω)) to (12).

Given ε > 0, the fluid is slightly compressible since ρε = 1 + ε ϱε with ϱε ∼ ϱ. The expression ϱε (and

its weak limit ϱ) plays at the level of (3) the part of a one-order corrector which keeps track of the original

compressibility. Now, looking at (6), it acts in the equations with the same order as the components vε
⊥

and Bε. It is therefore reasonable to find a link between ϱ, v⊥ and B . In view of the second relation inside

(7), we can already infer that p +B = 0, where p := b ϱ is the weak limit of pε. By this way, B acquires

asymptotically the status of a pressure which can serve to measure some compressibility in the parallel

direction. For prepared data, that is when B0 + bϱ0 = 0, we start with B0 = B0 . Otherwise, for general

unprepared data (which is our framework), we find that B0 ̸≡ B0 , see Subsection 4.7. Again, this is the

hallmark of a boundary layer occuring at time t = 0 concerning the component Bε.

1.3. Global overview

This paper is devoted to the rigorous justification of the convergence of the global weak solutions to (3)

to those of (12)-(17). As already mentioned, the nature of the singular limit depends on many factors.

1.3.1. Preceding results

The hyperbolic version of system (3), which is obtained by removing viscosities and resistivities, falls

into the framework of the theory of singular limits of quasilinear hyperbolic systems with large parameters.

This approach is restricted to smooth solutions (say Hs with s large enough). It was originally developed

by Klainerman and Majda [30,31,35]. In these circumstances, retain that:

• In the smooth prepared setting, as a corollary of Theorem 3 in [30] (see also §2.1 & §2.4 in [35], and

references [43,44]), a convergence result does exist [21] concerning (3) without diffusion terms. It holds

as long as the solution of the limit equations remains smooth. In a related framework, namely with a

strong constant magnetic field but without spatial anisotropy, the authors of [25] study the singular
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limit of the local-in-time smooth solution of the ideal MHD on a bounded domain, with convenient

boundary conditions and prepared initial data. It turns out that the limit system in [25] is essentially

two-dimensional since the spatial variable x3 plays the role of a label (no differential nor integral operator

with respect to x3). In [2], this method is successfully applied to the (more complex) XMHD system.

Note also that we can appeal to Theorem 4 in [30] (dealing with the diffusive version of Theorem 3 in

[30]; see also Theorem 4.1 in [46]) to justify the strong convergence on a fixed time interval of smooth

prepared solutions to (3) to those of (12)-(17).

• In the smooth unprepared setting, one possible strategy [45] is first to exhibit a smooth (in its arguments)

limit profile with a double number of variables (one set representing slow variations, the other set fast

ones) satisfying an appropriate limit equation (called the modulation equation). Second, it is to prove

that the smooth solution of the original system converges in a strong sense on a uniform time interval

to this profile evaluated at the slow and fast variables.

Weak solutions can also be considered, provided that parabolic contributions are incorporated. This allows

to relax the regularity conditions, to reach all times, and therefore to reinforce the universality of reduced

models. A way to make progress in this direction has been initiated in [34] which (for unprepared data)

exploits the unitary group method [20,45] and compactness arguments to construct a filtered profile for the

irrotational part of the velocity field. From this filtered profile, the authors of [34] construct a sequence of

approximations to the limit solution. Then, they exploit this sequence to pass to the limit in the nonlinear

terms. By doing so, they observe that the solenoidal part of the velocity field inherits a strong convergence,

while only weak convergence results are available concerning the irrotational part.

The discussion is very sensitive to the type of domain: 𝕋3 or ℝ3. In the case of the whole space, the

proof of [34] has been simplified in [11] by using Strichartz estimates [17,27]. This allows to improve the

convergence result of the irrotational part of the velocity field, which is precisely the part containing the

rapid oscillating acoustic waves. Indeed, the authors of [11] remark that this irrotational part satisfies a

linear (isotropic) wave equation. From there, due to dispersive effects (in all spatial variables), it must

asymptotically vanish in a strong sense.

1.3.2. The anisotropic complications

We clarify here the important unsolved specificities induced by the implementation of distinct spatial

scales. In the smooth prepared context, new problems already arise. For instance, as observed in [2], the

anisotropy can preclude obtaining a complete WKB expansion. Even in the smooth (prepared or not) case,

the particularities related to the asymptotic study of (3) have not yet been explored. Inspired by [34], our

aim is to go directly to weak solutions. We consider viscous and resistive situations vs. (almost) hyperbolic;

global weak solutions vs. local strong solutions; Lp and periodic solutions vs. Sobolev solutions; and general

data vs. prepared data. In so doing, the smooth strategies do not help. The good benchmark is [34]. But

MHD equations are quite different from compressible fluid equations [34]. And thus, the discussion must be

adapted to cover the magnetic effects. There are many important challenges to elucidate, especially:

• The unitary group method involves the quantities ℚ⊥vε
⊥ and b ϱε + Bε. It allows to filter out fast

oscillating magnetosonic waves propagating in the transverse directions in ways that have not yet been

investigated (even in the smooth context). Note in particular that b ϱ+B = 0, instead of simply ϱ = 0

in [34].

• The nonlinear expressions involving Bε are, of course, absent in [34].

• Even the tensor product ρεvε ⊗ vε must be dealt differently. Indeed, in our setting, both vε and ℙ⊥vε
⊥

are left aside by the filtering. Other arguments must be introduced to understand what happens at the

level of vε and Bε, that is how to recover (16). To deal with this issue, we exploit particular cancellations

provided by the structure of system (3) that we combine with some compactness results developed in [33]
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in order to prove the existence of weak solutions to the compressible Navier–Stokes equations. Indeed,

in particular from (6), we observe that ∂t(B
ε − ϱε) = 𝒪(1). Then, the quantity (Bε − ϱε) will yield the

right unknown to prove the limit equation for B . Moreover, in the case of the whole space, in contrast

to [11], we cannot exploit (isotropic) Strichartz estimates to obtain the strong convergence of ℚ⊥vε
⊥,

since the resulting wave equation is posed only in the perpendicular spatial variables x⊥, the parallel

spatial variable x being seen as a continuous label. Therefore, a natural and interesting open question

arises: could only transverse dispersive effects (and thus some kind of anisotropic Strichartz’s estimates)

be used to show that ℚ⊥vε
⊥ vanishes strongly? This question will be addressed in further work.

1.3.3. Plan of the work

The paper is organized as follows. In Section 2, we state our main results. In Section 3, we come back

to the physical motivations and to the origin of our anisotropic scaling. In Sections 4 and 5, we prove the

convergence of the compressible MHD equations (3)-(4) to the RMHD equations (12)-(13)-(16). We start

in Section 4 with the case of a periodic domain. Then, in Section 5, we perform this investigation in the

whole space. Finally, in Appendix A, we recall functional analysis results which are exploited throughout

the paper.

2. Main results

In Subsection 2.1, we specify some notations. In Subsection 2.2, we recall the notion of weak solutions.

In Subsection 2.3, we state our main results in the case of 𝕋3. In Subsection 2.4, we do the same for ℝ3.

2.1. Notation

Let Ω be either the periodic domain 𝕋3 or the whole space ℝ3. For s ∈ ℝ and 1 ≤ p ≤ ∞, we shall use

the standard non-homogeneous Sobolev spaces

W s,p(Ω) = (I − ∆)−s/2Lp(Ω) , Hs(Ω) = W s,2(Ω) ,

and their homogeneous versions

Ẇ s,p(Ω) = (−∆)−s/2Lp(Ω) , Ḣs(Ω) = Ẇ s,2(Ω) .

We introduce the transverse Leray projection operator ℙ⊥ : W s,p(Ω;ℝ2) → W s,p(Ω;ℝ2) onto vector fields

which are divergence-free in the perpendicular direction,

v⊥ = ℙ⊥v⊥ + ℚ⊥v⊥ , ∇⊥ · (ℙ⊥v⊥) = 0 , ∇⊥ × (ℚ⊥v⊥) = 0 , ∀v⊥ ∈ L2(Ω;ℝ2) ,

where ∇⊥ × v⊥ := ∂1v2 − ∂2v1. From the Mikhlin–Hörmander Fourier multipliers theorem, the operators

ℙ⊥ and ℚ⊥ are continuous maps from the Sobolev space W s,p(Ω;ℝ2) into itself for s ∈ ℝ and 1 < p < ∞.

In addition [34], for all δ > 0, we have the following continuous embedding ℙ⊥(L1(Ω)) ↪→ W−δ,1(Ω).

This embedding can be justified simply by observing that on the one hand the operators ℙ⊥ and ℚ⊥
are continuous maps from L1(Ω;ℝ2) into the Lorentz space L1,∞(Ω) (or weak L1(Ω); see, e.g., Theorem

5.3.3 in [19]) and on the other hand the continuous embedding L1,∞(Ω) ↪→ W−δ,1(Ω) holds. We denote

by C (0, T ;Lp
weak(Ω)), the space of functions which are continuous with respect to t ∈ [0, T ], with values

in Lp(Ω), with the weak topology. Moreover, we introduce the differential operator Dε ≡ t∇ε. The scalar

product between two matrices M1 and M2 is defined as M1 : M2 =
∑︁

ij M1ijM2ij . Moreover, given two

vectors B⊥ ∈ ℝ2 and v⊥ ∈ ℝ2, we adopt below the convention B⊥ × v⊥ := B1 v2 −B2 v1 ∈ ℝ.
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2.2. Weak solutions

Weak solutions of RMHD equations will be recovered by passing to the limit (ε → 0+) in the weak

formulation associated with (3)-(4). It is therefore important to specify what is meant by a weak solution

to (3)-(4) and to (12)-(13)-(16) when Ω = 𝕋3 and when Ω = ℝ3. Given initial data as in (8), with

ρε
0 ∈ L1

loc(Ω) , vε
0 , B

ε
0,
√︁
ρε

0v
ε
0 ∈ L2(Ω) , ∇ε ·Bε

0 = 0 in 𝒟′(Ω) , (18)

a triplet (ρε, vε, Bε) satisfying

ρε ∈ L∞
loc(ℝ+;Lγ

loc(Ω)) , (vε, Bε,
√
ρεvε) ∈ L∞

loc(ℝ+;L2(Ω)) , (19)

is said to be a weak solution of (3)-(4) if for all ψ = t(tψ⊥, ψ ) ∈ C ∞
c (ℝ+ × Ω;ℝ3) and for all φ ∈

C ∞
c (ℝ+ × Ω;ℝ) with pε = a (ρε)γ , we have

∫︂

Ω

dxρε
0φ(0) +

∞∫︂

0

dt

∫︂

Ω

dx ρε
(︁
∂tφ+ vε · ∇εφ

)︁
= 0 , (20)

∫︂

Ω

dx ρε
0v

ε
0⊥ · ψ⊥(0) +

∞∫︂

0

dt

∫︂

Ω

dx

(︃
ρεvε

⊥ · ∂tψ⊥ +
(︁
ρεvε

⊥ ⊗ vε −Bε
⊥ ⊗Bε

)︁
: Dεψ⊥

+

{︃
1

ε2
pε +

Bε

ε
+

|Bε|2
2

}︃
∇⊥ · ψ⊥ −Bε

⊥ · ∂ ψ⊥ + µ⊥v
ε
⊥ · ∆⊥ψ⊥ + µ vε

⊥ · ∆ ψ⊥

)︃
= 0 , (21)

∫︂

Ω

dx ρε
0v

ε
0 ψ (0) +

∞∫︂

0

dt

∫︂

Ω

dx

(︃
ρεvε∂tψ +

(︁
ρεvε ⊗ vε −Bε ⊗Bε

)︁
: Dεψ

+

{︃
1

ε
pε + ε

|Bε|2
2

}︃
∂ ψ + µ⊥v

ε∆⊥ψ + µ vε∆ ψ + ελεvε · ∇ε(∂ ψ )

)︃
= 0 , (22)

∫︂

Ω

dxBε
0⊥ · ψ⊥(0) +

∞∫︂

0

dt

∫︂

Ω

dx

(︃
Bε

⊥ · ∂tψ⊥ − vε
⊥ · ∂ ψ⊥ − (Bε

⊥ × vε
⊥)∇⊥ × ψ⊥

+ εvεBε
⊥ · ∂ ψ⊥ − εBεvε

⊥ · ∂ ψ⊥ + η⊥B
ε
⊥ · ∆⊥ψ⊥ + η Bε

⊥ · ∆ ψ⊥

)︃
= 0 , (23)

∫︂

Ω

dxBε
0 ψ (0) +

∞∫︂

0

dt

∫︂

Ω

dx

(︃
Bε∂tψ +

1

ε
vε

⊥ · ∇⊥ψ

− vεBε
⊥ · ∇⊥ψ +Bεvε

⊥ · ∇⊥ψ + η⊥B
ε∆⊥ψ + η Bε∆ ψ

)︃
= 0 , (24)

∫︂

Ω

dxBε(t) · ∇εφ(t) = 0 , ∀t ∈ ℝ+ . (25)

The notion of weak solution to (12)-(13) is obtained by testing (12) against all ψ⊥ ∈ C ∞
c (ℝ+ ×Ω;ℝ2) which

are such that ∇⊥ · ψ⊥ = 0. Concerning (16), it suffices to select scalar test functions.
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2.3. The periodic case

This is when Ω = 𝕋3. The functional framework is based on [23,34]. Select initial data satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρε
|t=0

= ρε
0 ∈ Lγ(𝕋3) , ρε

0 ≥ 0 ,
√︁
ρε

0v
ε
0 ∈ L2(𝕋3) ,

(ρεvε)|t=0
= mε

0 =

{︄
ρε

0v
ε
0 if ρε

0 ̸= 0

0 if ρε
0 = 0

}︄
∈ L2γ/(γ+1)(𝕋3) ,

Bε
|t=0

= Bε
0 ∈ L2(𝕋3) , ∇ε ·Bε

0 = 0 ,

∫︂

𝕋3

dxBε
0 = 0 .

(26)

We assume that these regularity assumptions are uniform with respect to ε. Furthermore, given a constant

C0 (not depending on ε), we impose

1

2

∫︂

𝕋3

dx
(︁
ρε

0|vε
0|2 + |Bε

0|2
)︁

+
a

ε2(γ − 1)

∫︂

𝕋3

dx
(︁
(ρε

0)γ − γρε
0(ρε

0)γ−1 + (γ − 1)(ρε
0)γ
)︁

≤ C0 . (27)

This is completed by

ρε
0 :=

1

|𝕋3|

∫︂

𝕋3

dx ρε
0 −−→ 1 , as ε −−→ 0+ . (28)

This bound gives access to weak compactness. Modulo the extraction of subsequences (which are not speci-

fied), we can say that
√︁
ρε

0v
ε
0 and Bε

0 converge weakly in L2(𝕋3) to u0 and B0 respectively. From (27), some

information on ρε
0 and ϱε

0 := (ρε
0 −ϱε

0)/ε can also be extracted. We will first show (see the proof of Lemma 1)

that ρε
0 → 1 in Lγ(𝕋3)−strong. Then, we will see that ϱε

0 ⇀ ϱ0 in Lκ(𝕋3)−weak for κ := min{2, γ}.

Using
√︁
ρε

0v
ε
0 ⇀ u0 in L2(𝕋3)−weak and ρε

0 → 1 in Lγ(𝕋3)−strong, we obtain ρε
0v

ε
0 ⇀ u0 = v0 in

L2γ/(γ+1)(𝕋3)−weak.

As soon as γ > 3/2, the contribution [23] furnishes a weak solution to (3)-(4) with

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρε ∈ L∞
loc

(︁
ℝ+;Lγ(𝕋3)

)︁
, vε ∈ L2

loc

(︁
ℝ+;H1(𝕋3)

)︁
,

√
ρεvε ∈ L∞

loc

(︁
ℝ+;L2(𝕋3)

)︁
, ρεvε ∈ L∞

loc

(︁
ℝ+;L2γ/(γ+1)(𝕋3)

)︁
∩ Cloc

(︁
ℝ+;L

2γ/(γ+1)
weak (𝕋3)

)︁
,

Bε ∈ L∞
loc

(︁
ℝ+;L2(𝕋3)

)︁
∩ Cloc

(︁
ℝ+;L2

weak(𝕋3)
)︁

∩ L2
loc

(︁
ℝ+;H1(𝕋3)

)︁
,

∫︂

𝕋3

dxBε = 0 .

(29)

The mass is conserved

ρε :=
1

|𝕋3|

∫︂

𝕋3

dx ρε = ρε
0 ,

and thus, using (28), we deduce that ρε → 1, as ε → 0+. Moreover, we have two energy inequalities

E
ε(t) +

t∫︂

0

dsDε(s) ≤ E
ε
0 , a.e. t ∈ [0,+∞) , (30)

with E ∈ {ℰ1, ℰ2}, where for i = 1, 2,
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ℰε
i (t) =

∫︂

Ω

dx
(︂

1
2ρ

ε|vε|2 + 1
2 |Bε|2 + Πi(ρ

ε)
)︂
, ℰε

i0 =

∫︂

Ω

dx
(︂

1
2ρ

ε
0|vε

0|2 + 1
2 |Bε

0|2 + Πi(ρ
ε
0)
)︂
, (31)

D
ε =

∫︂

Ω

dx
(︁
µε

⊥|∇⊥v
ε|2 + µε |∂ vε|2 + λε|∇ε · vε|2 + ηε

⊥|∇⊥B
ε|2 + ηε|∂ Bε|2

)︁
, (32)

and

Π1(ρε) =
a

ε2(γ − 1)
(ρε)γ , Π2(ρε) =

a

ε2(γ − 1)

(︁
(ρε)γ − γρε(ρε)γ−1 + (γ − 1)(ρε)γ

)︁
. (33)

For i = 1, the inequality (30) is a consequence of straightforward calculation involving (3). Using the mass

conservation, we can check that the inequality (30) for i = 2 is equivalent to (30) for i = 1. The case i = 2

is introduced because it allows a better comparison of ρε with ρε.

Theorem 1 (Convergence of MHD to RMHD on a periodic domain). Assume Ω = 𝕋3 and γ > 3/2. Con-

sider a sequence {(ρε, vε, Bε)}ε>0 of weak solutions to the compressible MHD system (3)-(4) with initial

data {(ρε
0, v

ε
0, B

ε
0)}ε>0 as in (27). Let us set ϱε := (ρε − ρε)/ε. Then, up to a subsequence, the family

{(ρε, ϱε, vε, Bε)}ε>0 converges to (1, ϱ, v, B) as indicated below

ρε −−→ 1 in L∞
loc(ℝ+;Lγ(𝕋3))−strong ,

ϱε −−⇀ ϱ in L∞
loc(ℝ+;Lκ(𝕋3))−weak–∗ , κ = min{2, γ} ,

ℙ⊥v
ε
⊥ −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lp ∩Hs(𝕋3))−strong , 1 ≤ p < 6 , 0 ≤ s < 1 ,

ℚ⊥v
ε
⊥ −−⇀ 0 in L2

loc(ℝ+;H1(𝕋3))−weak ,

vε −−⇀ v in L2
loc(ℝ+;H1(𝕋3))−weak ,

Bε
⊥ −−→ B⊥ in Lr

loc(ℝ+;L2(𝕋3))−strong , 1 ≤ r < ∞ ,

Bε −−⇀ B in L2
loc(ℝ+;H1(𝕋3))−weak ∩ L∞

loc(ℝ+;L2(𝕋3))−weak–∗ .

The limit point (v,B) is a weak solution to the RMHD equations (12)-(13)-(16) with initial data

(B⊥, v⊥)|t=0
= (B0⊥,ℙ⊥v0⊥) ∈ L2(𝕋3) , (B , v )|t=0

= (B0 , v0 ) ∈ L2(𝕋3) ,

where B0 is as in (17), and it satisfies the following regularity properties

B ∈ L∞
loc(ℝ+;L2(𝕋3)) ∩ L2

loc(ℝ+;H1(𝕋3)) , v ∈ L∞
loc(ℝ+;L2(𝕋3)) ∩ L2

loc(ℝ+;H1(𝕋3)) .

Moreover, the components ϱ and B are linked together by the relation b ϱ + B = 0, for a.e. (t, x) ∈
]0,+∞[×𝕋3.

2.4. The whole space case

This is when Ω = ℝ3. In order to define weak solutions in the whole space, we need to introduce the

following special type of Orlicz spaces Lp
q(Ω) (see Appendix A of [33] for more details on these spaces),

Lp
q(Ω) =

{︁
f ∈ L1

loc(Ω)
⃓⃓
f1{|f |≤δ} ∈ Lq(Ω), f1{|f |>δ} ∈ Lp(Ω), δ > 0

}︁
, (34)

where the function 1S denotes the indicator function of the set S. Obviously Lp
p(Ω) ≡ Lp(Ω).
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The functional framework is based on [23,34]. Select initial data satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρε
|t=0

= ρε
0 ∈ L1

loc(ℝ3) , ρε
0 − 1 ∈ Lγ

2(ℝ3) , γ > 3/2 , ρε
0 ≥ 0 ,

√︁
ρε

0v
ε
0 ∈ L2(ℝ3) ,

(ρεvε)|t=0
= mε

0 =

{︄
ρε

0v
ε
0 if ρε

0 ̸= 0

0 if ρε
0 = 0

}︄
∈ L1

loc(ℝ3) ,

Bε
|t=0

= Bε
0 ∈ L2(ℝ3) , ∇ε ·Bε

0 = 0 ,

∫︂

ℝ3

dxBε
0 = 0 ,

ρε
0 −−→ 1 , vε

0 −−→ 0 , Bε
0 −−→ 0 , as |x| −−→ ∞ .

(35)

We assume that these regularity assumptions are uniform with respect to ε. Furthermore, given a constant

C0 (not depending on ε), we impose

1

2

∫︂

ℝ3

dx
(︁
ρε

0|vε
0|2 + |Bε

0|2
)︁

+
a

ε2(γ − 1)

∫︂

ℝ3

dx
(︁
(ρε

0)γ − γρε
0 + γ − 1

)︁
≤ C0 . (36)

This bound gives access to weak compactness. Modulo the extraction of subsequences (which are not spec-

ified) we can say that
√︁
ρε

0v
ε
0 and Bε

0 converge weakly in L2(ℝ3) to u0 and B0 respectively. From (36),

we will show (see the proof of Lemma 6) the subsequent results. First, we will obtain (uniformly in ε) the

bounds ρε
0 ∈ Lγ

loc(ℝ3), ϱε
0 ∈ Lκ

2 ∩Lκ
loc(ℝ3), with κ = min{2, γ}, as well as ρε

0v
ε
0 ∈ L

2γ/(γ+1)
loc (ℝ3). Second, we

will obtain ρε
0 → 1 in Lγ

2 ∩ Lγ
loc(ℝ3)−strong, and ϱε

0 ⇀ ϱ0 in Lκ
loc(ℝ3)−weak. Moreover, using

√︁
ρε

0v
ε
0 ⇀ u0

in L2(ℝ3)−weak and ρε
0 → 1 in Lγ

loc(ℝ3)−strong, we obtain ρε
0v

ε
0 ⇀ u0 = v0 in L

2γ/(γ+1)
loc (ℝ3)−weak.

As soon as γ > 3/2, the contribution [23] furnishes a weak solution to (3)-(4) with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρε ∈ L∞
loc(ℝ+;Lγ

loc(ℝ3)) , ρε − 1 ∈ L∞
loc(ℝ+;Lγ

2(ℝ3)) , ∇vε ∈ L2
loc(ℝ+;L2(ℝ3)) ,

√
ρεvε ∈ L∞

loc(ℝ+;L2(ℝ3)) , ρεvε ∈ L∞
loc

(︁
ℝ+;L

2γ/(γ+1)
loc (ℝ3)

)︁
∩ Cloc

(︁
ℝ+;L

2γ/(γ+1)
loc weak (ℝ3)

)︁
,

Bε ∈ L∞
loc(ℝ+;L2(ℝ3)) ∩ Cloc(ℝ+;L2

weak(ℝ3)) ∩ L2
loc(ℝ+;H1(𝕋3)) ,

∫︂

𝕋3

dxBε = 0 ,

ρε −−→ 1 , vε −−→ 0 , Bε −−→ 0 , as |x| −−→ ∞ .

(37)

Moreover, we have the energy inequality (30) with Eε = ℰε
3 given by the formula (31) and Πi = Π3, where

Π3 is defined by

Π3(ρε) =
a

ε2(γ − 1)

(︁
(ρε)γ − γρε + γ − 1

)︁
. (38)

This energy inequality is the consequence of straightforward calculation involving (3).

Theorem 2 (Convergence of MHD to RMHD on the whole space). Assume Ω = ℝ3 and γ > 3/2. Con-

sider {(ρε, vε, Bε)}ε>0 a sequence of weak solutions to the compressible MHD system (3)-(4) with initial

data {(ρε
0, v

ε
0, B

ε
0)}ε>0 as in (36). Let us set ϱε := (ρε − 1)/ε. Then, up to a subsequence, the family

{(ρε, ϱε, vε, Bε)}ε>0 converge to (1, ϱ, v, B) as indicated below
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ρε −−→ 1 in L∞
loc(ℝ+;Lγ

2 ∩ Lγ
loc ∩H−α(ℝ3))−strong , α ≥ 1/2 ,

ϱε −−⇀ ϱ in L∞
loc(ℝ+;Lκ

loc ∩H−α(ℝ3))−weak–∗ , κ = min{2, γ} , α ≥ 1/2 ,

ℙ⊥v
ε
⊥ −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lp
loc ∩Hs

loc(ℝ3))−strong , 1 ≤ p < 6 , 0 ≤ s < 1 ,

ℚ⊥v
ε
⊥ −−⇀ 0 in L2

loc(ℝ+;H1(ℝ3))−weak ,

vε −−⇀ v in L2
loc(ℝ+;H1(ℝ3))−weak ,

Bε
⊥ −−→ B⊥ in Lr

loc(ℝ+;L2
loc(ℝ3))−strong , 1 ≤ r < ∞ ,

Bε −−⇀ B in L2
loc(ℝ+;H1(ℝ3))−weak ∩ L∞

loc(ℝ+;L2(ℝ3))−weak–∗ .

The limit point (v,B) is a weak solution to the RMHD equations (12)-(13)-(16) with initial data

(B⊥, v⊥)|t=0
= (ℙ⊥B0⊥,ℙ⊥v0⊥) ∈ L2(ℝ3) , (B , v )|t=0

= (B0 , v0 ) ∈ L2(ℝ3) ,

where B0 is as in (17), and it satisfies the following regularity properties

B ∈ L∞
loc(ℝ+;L2(ℝ3)) ∩ L2

loc(ℝ+;H1(ℝ3)) , v ∈ L∞
loc(ℝ+;L2(𝕋3)) ∩ L2

loc(ℝ+;H1(ℝ3)) .

Moreover, the components ϱ and B are linked together by the relation b ϱ + B = 0, for a.e. (t, x) ∈
]0,+∞[×ℝ3.

3. Physical motivations and scaling

The dimensional magnetohydrodynamic equations reads

⎧
⎪⎪⎨
⎪⎪⎩

∂tρ+ ∇ · (ρv) = 0 ,

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇p + B × (∇ × B) − µ⊥∆⊥v − µ ∆ v − λ∇(∇ · v) = 0 ,

∂tB + ∇ × (B × v) − η⊥∆⊥B − η ∆ B = 0 ,

(39)

with the divergence-free condition ∇ · B = 0, and the barotropic closure p = p(ρ) = 𝔞ργ , γ > 1. The

triplet (ρ, v, B) = (ρ, v, B)(t, x⊥, x ) ∈ ℝ+ × ℝ3 × ℝ3 denotes respectively the dimensional fluid density,

fluid velocity, and magnetic field. The variable t represents the dimensional time variable, while the two-

dimensional (resp. one-dimensional) variable x⊥ (resp. x ) represents the perpendicular (resp. parallel)

dimensional space variable.

3.1. Large aspect ratio framework

Anisotopic plasmas with a strong background magnetic field are ubiquitus in astrophysical, space and

fusion sciences. As an example, for fusion plasmas, the straight rectangular tokamak model involves a very

long periodic column, whose section is a small periodic rectangle. The corresponding geometry and scalings

are detailed carefully in [48]. Another example comes from various astrophysical plasmas such as the solar

wind or the magnetosheath for which the underlying RMHD ordering is precisely described in [41]. In order

to obtain the dimensionless MHD equations (3), we must first nondimensionalize equations (39), and then

choose a scaling. Putting dimensions into the “bar” quantities, we define the dimensionless unknowns and

variables as t = t̄ t, x⊥ = x̄⊥ x⊥, x = x̄ x , µ⊥ = µ̄⊥ µ⊥, µ = µ̄ µ , λ = λ̄λ, η⊥ = η̄⊥ η⊥, η = η̄ η ,

𝔞 = 𝔞̄ a, ρ = ρ̄ ρ, v = v̄ v, and B = B̄B. From this, and the barotropic state law, we deduce the dimensionless

pressure as p = p̄ p with p̄ = 𝔞̄ρ̄γ and p = aργ . We also define important physical quantities such as the

Alfvén velocity vA := B̄/
√
ρ̄, the sound velocity vs :=

√︁
γp̄/ρ̄, the parameter β := p̄/|B̄|2 = v2

s/(γv
2
A), the
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Alfvén number εA := v̄/vA and the Mach number εM := v̄/vs = εA/(
√
γβ). Here, we suppose that the

parameter β is of order one, and thus we set β = 1. This configuration is called the high β ordering [49],

and often appears in space plasmas [3,29,38]. In other situations, such as plasmas of tokamaks [13,24,26],

the parameter β can be relatively small; this is the so-called low β regim. Indeed, since β measures the ratio

of the fluid pressure to the magnetic pressure, a magnetically well-confined plasmas is achieved for low β.

Since here we choose β = 1, we have vs =
√
γvA ≃ vA.

In order to understand which parts of the solution of the MHD equations (3) are eliminated in the reduced

model (12)-(17), we now recall the different types of (linear) waves propagating in a plasma governed by

the MHD equations (39). Dropping viscosities and resistivities terms, it is well-known [40] that the system

(39) is hyperbolic, but not strictly hyperbolic since some eigenvalues may coincide. Linearizing the system

(39) around the constant stationary solution (ρ̄, 0, B̄ b), where b is a unit vector, we obtain a linear system

whose the Jacobian has real eigenvalues [18]. The set of MHD eigenvalues and associated waves can be

splitted into three groups. Introducing the unit vector n as the direction of propagation of any wave, the

sound speed Vs :=
√︁
γp/ρ =

√
avs (with ρ = 1) and the Alfvén velocity VA := |B|/√ρ = vA (with |B| = 1

and ρ = 1), these three groups are [18]:

• Fast magnetosonic waves:

λ±
F = ± 𝒞F , 𝒞2

F =
1

2

(︂
V 2

s + V 2
A +

√︂
(V 2

s + V 2
A)2 − 4V 2

s V
2

A(b · n)2
)︂
.

• Alfvén waves:

λ±
A = ± 𝒞A , 𝒞2

A = V 2
A(b · n)2 .

• Slow magnetosonic waves:

λ±
S = ± 𝒞S , 𝒞2

S =
1

2

(︂
V 2

s + V 2
A −

√︂
(V 2

s + V 2
A)2 − 4V 2

s V
2

A(b · n)2
)︂
.

Since here b := e , Alfvén waves cannot propagate in the perpendicular direction to e . Indeed, it is well-

known [18] that Alfvén waves propagate mainly along the direction (b := e ) of the ambiant magnetic field.

For a wave propagating in the perpendicular direction to e , we obtain λ±
F = ±(V 2

s +V 2
A)1/2 ≃ ±VA ≃ ±Vs,

whereas λ±
S = 0. Note that in dimensionless variables we have λ±

F = ±
√
b+ 1, with b = aγ. Indeed,

normalizing the velocity to the Alfvén velocity vA and taking β = 1 in λ±
F = ±vA

√
βaγ + 1, we obtain the

desired result. In order to understand now the nature of the waves that are filtered out from the singular

part of the linear system (6), we rewrite it in the fast time variable t to obtain

∂tϱ+ ∇⊥ · v⊥ = 0 , ∂tv⊥ + ∇⊥(bϱ+B ) = 0 , ∂tB + ∇⊥ · v⊥ = 0 .

With U := t(ϱ, v1, v2, B ), the previous system can be recast as ∂tU + (A1∂x1
+ A1∂x2

)U = 0, where the

matrices Ai have constant coefficients depending on b. With n⊥ = t(n1,n2) a unit vector in the perpendicular

direction, the matrix 𝒜 := n1A1 +n2A2 is diagonalizable with the real eigenvalues λ0(𝒜) = 0 (of multiplicity

two), λ+(𝒜) =
√
b+ 1, and λ−(𝒜) = −

√
b+ 1. Then, the waves associated with the singular part of the

linear system (6) are the transverse (linear) fast magnetosonic waves.

Therefore, here, we aim at filtering out the fast dynamics associated with the perpendicular fast magne-

tosonic waves, and keep the dynamics of waves which propagate at a speed slower than the perpendicular

fast magnetosonic waves 𝒞F ≃ vA. Defining the time τ⊥ as the time needed by a fast magnetosonic waves

to cross the device in the perpendicular direction, we then have τ⊥vA = x̄⊥. Since we want to describe

the dynamics on a time scale longer that τ⊥, we set t̄ = τ⊥/ε, with ε ≪ 1. This is equivalent to describe
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the dynamics of waves which propagate with velocity slower than 𝒞F (or vA). Hence, we have v̄ = εvA,

εA = ε, and εM = ε/(
√
γβ) ≃ ε. Moreover, we suppose a strong anisotropy between the perpendicular and

parallel direction, that is x̄⊥/x̄ = ε. In other words the dimensional gradient ∇x becomes the anisotropic

dimensionless gradient ∇ε of (2). In addition, we suppose the presence of a strong constant background

magnetic field in the parallel direction (B = e + εBε). Since ε is present in the resulting dimensionless

system, the velocity field v and the density ρ will depend on ε, hence we set v = vε and ρ = ρε. Finally, it

remains to choose some scalings with respect to the small parameter ε for the dimensionless viscosities and

resistivities. We choose {µ⊥ = εµε
⊥, µ = µε/ε, λ = ελε}, where viscosities {µε

⊥, µ
ε , λε} satisfy (10), and

{η⊥ = εηε
⊥, η = ηε/ε}, where resistivities {ηε

⊥, η
ε} satisfy (11).

All the above considerations allow us to pass from the dimensional MHD equations (39) to the dimen-

sionless ones (3).

3.2. Nonlinear optics framework

Conducting fluids are traversed by electromagnetic waves, which can interact with the medium in various

ways. These phenomena can be modeled by adjusting the dimensionless parameters to account for special

regimes, and by incorporating (high frequency) oscillating source terms or equivalently (high frequency)

oscillating initial data into the equations. Here, we choose viscosities and resistivities which accommodate

the propagation of oscillating waves with wavelengths approximately ε. For this, we impose viscosities

{µ⊥ = ε2µε
⊥, µ = µε , λ = ε2λε}, where dimensionless viscosities {µε

⊥, µ
ε , λε} satisfy (10), and resistivities

{η⊥ = ε2ηε
⊥, η = ηε}, where dimensionless resistivities {ηε

⊥, η
ε} satisfy (11). We then look for solution like

⎛
⎜⎝

ρ/ρ̄

v/v̄

B/B̄

⎞
⎟⎠ (t, x⊥, x ) =

⎛
⎜⎝

ρε
(︁
t, ε−1 x⊥, x

)︁

ε vε
(︁
t, ε−1 x⊥, x

)︁

1 + εBε
(︁
t, ε−1 x⊥, x

)︁

⎞
⎟⎠ =

⎛
⎜⎝

ρε

0

1

⎞
⎟⎠+ ε

⎛
⎜⎝

ϱε

vε

Bε

⎞
⎟⎠
(︁
t, ε−1 x⊥, x

)︁

=

⎛
⎜⎝

ρε

0

1

⎞
⎟⎠+ ε

⎛
⎜⎝

ϱε

vε

Bε

⎞
⎟⎠
(︁
t, x⊥, x

)︁
, (40)

where ϱε = (ρε − ρε)/ε. Plugging (40) into (39) leads to (3). Therefore, we investigate the dynamics of a

magnetized plasma near a fixed large constant magnetic field where anisotropic oscillations in space can

develop. The first term of the right-hand side of (40), which is of order of unity, is a stationary solution of

(39). The second term of the right-hand side of (40) is the perturbation, which is of small amplitude (ε ≪ 1)

and of high frequency (ε−1 ≫ 1). Such a framework belongs to the so called weakly nonlinear geometric

optics regim.

4. Asymptotic analysis in a periodic domain

This section is devoted to the proof of Theorem 1. First, we obtain some weak compactness properties for

the sequences, ϱε, Bε, vε, ρεvε, and ℚ⊥vε
⊥, and strong ones for the sequences ρε, Bε

⊥, ℙ⊥vε
⊥, ℙ⊥(ρεvε

⊥) and

(ρεvε − vε). Using these compactness results, we justify the passage to the limit, in order, in the equations

of ρε, ρεvε
⊥, ρεvε, Bε

⊥, and Bε (or equivalently ϱε). For the equations of ρεvε
⊥, we use the unitary group

method, while for the equations of ρεvε, and Bε, we use some particular cancellations and a compactness

argument (Lemma 14 of Appendix A).

4.1. Compactness of ρε and ϱε

Here, we aim at proving the following lemma.
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Lemma 1. Assume γ > 3/2. The sequences ρε and ϱε := (ρε − ρε)/ε satisfy the following properties.

ρε −−→ 1 in L∞
loc(ℝ+;Lγ(𝕋3))−strong ,

ϱε −−⇀ ϱ in L∞
loc(ℝ+;Lκ(𝕋3))−weak–∗ , κ = min{2, γ} .

Proof. Let us start with ρε. From energy inequality (30)-(33) with the pressure term Π1, we already know

that Π1(ρε) is bounded in L∞
loc(ℝ+;L1(𝕋3)), uniformly with respect to ε. Thus, by weak compactness, we

have ρε → 1 in L∞
loc(ℝ+;Lγ(𝕋3))−weak–∗. In addition, since ρε = ρε

0 → 1 as ε → 0, for ε small enough we

have ρε ∈ (1/2, 3/2). Then, using Lemma 11, we claim that there exists η = ηδ = η(γ, δ) > 0, such that for

|x− ρε| ≥ δ and x ≥ 0, we have

xγ − γxx̄γ−1 + (γ − 1)x̄γ ≥ ηδ

⃓⃓
x− ρε

⃓⃓γ
. (41)

Indeed, using Lemma 11 with x̄ = ρε ∈ (1/2, 3/2), we obtain, η = ν3, for 1 < γ < 2, and 3/2 < R < x;

η = δ2−γν2, for 1 < γ < 2, and x ≤ R; and η = ν1 supx∈𝕋3 |x− ρε|2−γ > 0, for γ ≥ 2, and x ≥ 0. Therefore,

using (41), inequality (a/2 + b/2)γ ≤ (aγ + bγ)/2 (by convexity of x ↦→ xγ), and energy inequality (30)-(33)

with the pressure term Π2, we obtain

sup
t≥0

∫︂

𝕋3

dx |ρε − 1|γ ≤ 2γ−1
⃓⃓
𝕋3
⃓⃓⃓⃓
ρε − 1

⃓⃓γ
+ 2γ−1 sup

t≥0

{︃ ∫︂

|ρε−ρε|≤δ

dx+

∫︂

|ρε−ρε|>δ

dx

}︃⃓⃓
ρε − ρε

⃓⃓γ

≤ 2γ−1

{︃⃓⃓
𝕋3
⃓⃓⃓⃓
ρε − 1

⃓⃓γ
+
⃓⃓
𝕋3
⃓⃓
δγ +

C0ε
2

ηδ

}︃
.

In the previous estimate, taking first ε → 0, and then δ → 0, lead to the convergence of ρε as stated in

Lemma 1. We continue with ϱε := (ρε − ρε)/ε. Using Lemma 11 with x̄ = ρε ∈ (1/2, 3/2) and x = ρε, and

using energy inequality (30)-(33) with the pressure term Π2, there exists a constant C independent of ε

such that

{︄
if γ ≥ 2, ∥ϱε∥L∞

loc(ℝ+;L2(𝕋3)) ≤ C ,

if γ < 2, ∀R ∈
(︁

3
2 ,+∞

)︁
, ∥ϱε

1ρε<R∥L∞
loc(ℝ+;L2(𝕋3)) ≤ C , ∥ϱε

1ρε≥R∥L∞
loc(ℝ+;Lγ(𝕋3)) ≤ Cε(2/γ)−1 .

(42)

Using this last estimate, ϱε is bounded, uniformly with respect to ε, in L∞
loc(ℝ+;Lκ(𝕋3)), with κ = min{2, γ}.

Hence, weak compactness leads to the convergence of ϱε stated in Lemma 1. □

4.2. Compactness of Bε

Here, we aim at proving the following lemma.

Lemma 2. The sequence Bε satisfies the following properties.

Bε −−⇀ B in L2
loc(ℝ+;L6 ∩H1(𝕋3))−weak ∩ L∞

loc(ℝ+;L2(𝕋3))−weak–∗ ,
∇ε ·Bε −−⇀ ∇⊥ ·B⊥ = 0 in L2

loc(ℝ+;L2(𝕋3))−weak ,

Bε
⊥ −−→ B⊥ in Lr

loc(ℝ+;L2(𝕋3))−strong , 1 ≤ r < +∞ .

Proof. The first limit of Lemma 2, comes on the one hand from weak compactness, and on the other

hand from energy inequality (30)-(33) with the pressure term Π2, and the continuous Sobolev embeddings
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H1(𝕋3) ↪→ L6(𝕋3), which implies that Bε is bounded in L2
loc(ℝ+;H1 ∩ L6(𝕋3)) and in L∞

loc(ℝ+;L2(𝕋3)),

uniformly with respect to ε.

We continue with the second assertion. Since Bε is uniformly bounded in L2
loc(ℝ+;H1(𝕋3)) and ∇⊥ ·Bε

⊥ =

−ε∂ Bε in 𝒟′, we obtain ∥∇⊥ ·Bε
⊥∥L2

loc(ℝ+;L2(𝕋3)) ≤ ε∥∂ Bε∥L2
loc(ℝ+;L2(𝕋3)) ≤ C0ε. On the one hand ∇⊥ ·Bε

⊥
is bounded in L2

loc(ℝ+;L2(𝕋3)) and goes to ∇⊥ · B⊥ ∈ 𝒟′. On the other hand, it must vanish as ε → 0.

Hence, the second line.

For the third assertion, we apply Lemma 13 of Appendix A with 𝔅0 = H1(𝕋3), 𝔅 = L2(𝕋3), 𝔅1 =

H−1(𝕋3), p = r, and q = ∞. To this end, we have to check the corresponding hypotheses. Below (and after

when there is no possible ambiguity), bounded means “uniformly bounded with respect to ε”.

• From energy inequality (30)-(33) and the continuous Sobolev embedding H1(𝕋3) ↪→ L6(𝕋3), we obtain

that Bε is bounded in L∞
loc(ℝ+;L2(𝕋3)) ∩ L2

loc(ℝ+;H1 ∩ L6(𝕋3)).

• Obviously, Bε
⊥ is bounded in L∞

loc(ℝ+;L2(𝕋3)) ∩ L1
loc(ℝ+;H1(𝕋3)).

• The final step is to estimate ∂tB
ε
⊥. We can exploit equation (1) to express this time derivative. Observe

that, as can be seen at the level of (23), there is no singular term in ε. The Laplacian parts are clearly

bounded in L1
loc(ℝ+;H−1(𝕋3)). Let us consider the products of components of Bε and vε. We refer

to (the proof of) Lemma 3 which guarantees that vε is bounded in L2
loc(ℝ+;H1 ∩ L6(𝕋3)). Hence, by

Hölder inequality, these products are bounded in L1
loc(ℝ+;L3(𝕋3)). Since L3(𝕋3) ↪→ L2(𝕋3), after spatial

derivation, we find as required a bound in L1
loc(ℝ+;H−1(𝕋3)) for ∂tB

ε
⊥. □

4.3. Compactness of vε and ρεvε

Here we aim at proving the following lemma.

Lemma 3. Assume γ > 3/2. Let 𝔰 := max{1/2, 3/γ − 1} ∈ [1/2, 1). The sequences vε and ρεvε satisfy the

following properties.

vε −−⇀ v in L2
loc(ℝ+;L6 ∩H1(𝕋3))−weak ,

∇ε · vε −−⇀ ∇⊥ · v⊥ = 0 in L2
loc(ℝ+;L2(𝕋3))−weak ,

ℙ⊥v
ε
⊥ −−⇀ ℙ⊥v⊥ and ℚ⊥v

ε
⊥ −−⇀ ℚ⊥v⊥ = 0 in L2

loc(ℝ+;L6 ∩H1(𝕋3))−weak ,

ℙ⊥v
ε
⊥ −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lp ∩Hs(𝕋3))−strong , 1 ≤ p < 6 , 0 ≤ s < 1 ,

ρεvε −−⇀ v in L2
loc(ℝ+;Lq ∩H−σ(𝕋3))−weak , ∀σ ≥ 𝔰 := max

{︂1

2
,

3

γ
− 1
}︂
, q =

6γ

6 + γ
,

ρεvε − vε −−→ 0 in L2
loc(ℝ+;Lq(𝕋3))−strong , q = 6γ/(6 + γ) ,

ℙ⊥(ρεvε
⊥) −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lq(𝕋3))−strong , q = 6γ/(6 + γ) .

Proof. We start with the first statement of Lemma 3. From energy inequality (30)-(33) with the pres-

sure term Π2, we obtain that vε is bounded in L2
loc(ℝ+; Ḣ1(𝕋3)). Let us show that vε is bounded in

L2
loc(ℝ+;H1(𝕋3)). From Poincaré–Wirtinger inequality and Hölder inequality, it is easy to show that

∥ · ∥2
H1(𝕋3) ∼ |(·)|2 + ∥ · ∥2

Ḣ1(𝕋3)
, with (·) ≡ |𝕋3|−1

∫︂

𝕋3

dx · .

There remains to control the mean value vε. Using Hölder inequality, the embedding L6(𝕋3) ↪→
L2γ/(γ−1)(𝕋3) for γ > 3/2, the continuous embedding H1

0 (𝕋3) ↪→ L6(𝕋3) (with H1
0 (𝕋3) the set of zero-

average functions in Ḣ1(𝕋3)), we obtain for any T > 0,
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T∫︂

0

dt

∫︂

𝕋3

dx ρε
⃓⃓
vε − vε

⃓⃓2 ≤
T∫︂

0

dt ∥ρε∥Lγ(𝕋3)

⃦⃦
vε − vε

⃦⃦2

L2γ/(γ−1)(𝕋3)

≤
T∫︂

0

dt ∥ρε∥Lγ(𝕋3)

⃦⃦
vε − vε

⃦⃦2

L6(𝕋3)

≤ ∥ρε∥L∞
loc(ℝ+;Lγ(𝕋3))∥∇vε∥2

L2
loc(ℝ+;L2(𝕋3)) ≤ C < ∞ .

(43)

Using inequality b2/2 ≤ (a− b)2 + a2 and the mass conservation law, we obtain

∫︂

𝕋3

dx ρε(vε)2 = ∥ρε
0∥L1(𝕋3)(vε)2 ≤ 2

∫︂

𝕋3

dx ρε(vε − vε)2 + 2

∫︂

𝕋3

dx ρε(vε)2.

With (43), this implies (uniformly in ε)

(vε)2 ≤ 2T−1 ∥ρε
0∥−1

L1(𝕋3))

(︁
C + T ∥√

ρεvε∥2
L∞([0,T ];L2(𝕋3))

)︁
≤ ˜︁C .

This information combined with the bound of vε in L2
loc(ℝ+; Ḣ1(𝕋3)) indicates that vε is bounded in

L2
loc(ℝ+;H1(𝕋3)).

We continue with the second statement. To this end, we look at the mass conservation law (20). Since ρε →
1 in L∞

loc(ℝ+;Lγ(𝕋3))−strong (Lemma 1), vε ⇀ v in L2
loc(ℝ+;L6(𝕋3))−weak and ρε

0 → 1 in Lγ(𝕋3)−strong

(from (27) and by following the proof of Lemma 1), it is easy to pass to the limit in the distributional sense

in the linear terms. For the nonlinear term, we write ρε vε = (ρε − 1) vε + vε. Since 1/γ + 1/6 < 1 (recall

that γ > 3/2), the first term vanishes strongly in L2(ℝ+;L6γ/(6+γ)(𝕋3)). At the limit, we recover for any

test function φ that

∫︂

Ω

dxφ(0) +

∞∫︂

0

dt

∫︂

Ω

dx
(︁
∂tφ+ v⊥ · ∇⊥φ

)︁
=

∞∫︂

0

dt

∫︂

Ω

dx v⊥ · ∇⊥φ = 0 ,

which means that ∇⊥ · v⊥ = 0 in 𝒟′(ℝ∗
+ × 𝕋3).

The third assertion of Lemma 3 is a consequence of the first and second statements of Lemma 3, of the

Helmhotz–Hodge decomposition vε
⊥ = ℙ⊥vε

⊥ +ℚ⊥vε
⊥ and of the (weak) continuity properties of ℙ⊥ and ℚ⊥.

The fourth assertion exploits some Gagliardo–Nirenberg interpolation inequalities together with delicate

equicontinuity properties in time that require to already control the product ρε vε. The proof is postponed

to a later stage.

We pursue with the proof of fifth statement of Lemma 3. On the one hand, from the uniform bounds

vε ∈ L2
loc(ℝ+;L6(𝕋3)) and ρε ∈ L∞

loc(ℝ+;Lγ(𝕋3)), and on the other hand, from Hölder inequality, we obtain

ρεvε ∈ L2
loc(ℝ+;L6γ/(6+γ)(𝕋3)) uniformly with respect to ε, which gives, by weak compactness, the weak

convergence of this sequence in this space. Moreover, from the first assertion of Lemma 1 and 3, the product of

ρε and vε weakly converges to the limit point v in L2
loc(ℝ+;Lq(𝕋3))−weak with 1/q = 1/γ+1/6. The Sobolev

embedding H𝔰(𝕋3) ↪→ Lq′

(𝕋3), with 1/q′ = 1 − 1/q = (5γ − 6)/(6γ) and 𝔰 ≥ max{0, 3/γ − 1}, implies by

duality that Lq(𝕋3) ↪→ H−𝔰(𝕋3). Without loss of generality and in order to avoid further the multiplication

of regularity indices we restrict 𝔰 such that 𝔰 ≥ max{1/2, 3/γ−1}. We then have ρεvε ∈ L2
loc(ℝ+;H−𝔰(𝕋3)).

We conclude by using the Sobolev embedding Hσ(𝕋3) ↪→ H𝔰(𝕋3) for σ ≥ 𝔰, and duality.

From Hölder inequality, we have

∥ρεvε − vε∥L2
loc(ℝ+;Lq(𝕋3)) ≤ ∥ρε − 1∥L∞

loc(ℝ+;Lγ(𝕋3))∥vε∥L2
loc(ℝ+;L6(𝕋3)) , 1/q = 1/γ + 1/6 .

Then, exploiting the first assertion of Lemmas 1 and 3, we obtain the sixth statement of Lemma 3.
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We can now come back to the L2
loc(ℝ+;Lp(𝕋3))−strong convergence in the fourth assertion of Lemma 3.

For this, we use Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three

points, are satisfied. 1) From the fifth statement of Lemma 3, the selfadjointness of ℙ⊥ for the scalar product

of L2(Ω;ℝ2), and the continuity of ℙ⊥ in Lα(Ω;ℝ2), for 1 < α < ∞, we obtain ℙ⊥(ρεvε
⊥) ⇀ ℙ⊥v⊥ = v⊥

in L2
loc(ℝ+;L6γ/(6+γ)(𝕋3))−weak. 2) The bound ℙ⊥vε

⊥ ∈ L2
loc(ℝ+;L6(𝕋3)) and Lemma 4.3 in [7] implies

∥ℙ⊥vε
⊥(t, · + h) − ℙ⊥vε

⊥(t, ·)∥L2
loc(ℝ+;L6(𝕋3)) → 0, as |h| → 0, uniformly with respect to ε. 3) Applying the

Leray projector ℙ⊥ to equation (21) for ρεvε
⊥, we obtain

∂t(ℙ⊥(ρεvε
⊥)) = −∇ε · ℙ⊥(ρεvε

⊥ ⊗ vε) + ∂ ℙ⊥B
ε − ∇ε · ℙ⊥(Bε

⊥ ⊗Bε) + µε
⊥∆⊥ℙ⊥v

ε
⊥ + µε∆ ℙ⊥v

ε
⊥ . (44)

Using the bounds ρε|vε|2 ∈ L∞
loc(ℝ+;L1(𝕋3)), vε ∈ L2

loc(ℝ+;H1(𝕋3)), and Bε ∈ L∞
loc(ℝ+;L2(𝕋3)), and

the following properties of the projector ℙ⊥, ℙ⊥(Hα(𝕋3)) ↪→ Hα(𝕋3), with α ≥ 0, and ℙ⊥(L1(𝕋3)) ↪→
W−δ,1(𝕋3), with δ > 0, we obtain from (44), ∂t(ℙ⊥(ρεvε

⊥)) ∈ L2
loc(ℝ+; (W−δ−1,1 + H−1 + L2)(𝕋3)) ↪→

L1
loc(ℝ+;W−δ−1,1(𝕋3)). Gathering points 1) to 3), we can apply Lemma 14 of Appendix A with gε = ρεvε

⊥,

hε = ℙ⊥vε
⊥, p1 = q1 = 2 (1/p1 + 1/q1 = 1), p2 = 6γ/(6 + γ), and q2 = 6 (1/p2 + 1/q2 = 1/γ + 1/3 < 1, for

γ > 3/2), to deduce that

ℙ⊥(ρεvε
⊥) · ℙ⊥v

ε
⊥ −−⇀ |ℙ⊥v⊥|2 = |v⊥|2 in 𝒟′(ℝ∗

+ × 𝕋3) . (45)

This limit leads to the strong convergence of ℙ⊥vε
⊥ to v⊥ in L2

loc(ℝ+;L2(𝕋3)). Indeed, using (45) and Hölder

inequality, we obtain for any T > 0,

lim sup
ε→0

∥ℙ⊥v
ε
⊥∥2

L2
loc(ℝ+;L2(𝕋3)) − ∥ℙ⊥v⊥∥2

L2
loc(ℝ+;L2(𝕋3))

= lim sup
ε→0

T∫︂

0

dt

∫︂

𝕋3

dx
(︁
|ℙ⊥v

ε
⊥|2 − ℙ⊥(ρεvε

⊥) · ℙ⊥v
ε
⊥
)︁

= lim sup
ε→0

T∫︂

0

dt

∫︂

𝕋3

dxℙ⊥v
ε
⊥ · vε

⊥(1 − ρε)

≤ lim sup
ε→0

∥ρε − 1∥L∞
loc(ℝ+;Lγ(𝕋3))∥vε

⊥∥2
L2

loc(ℝ+;L2θ(𝕋3)) ,

with 1/γ+1/θ = 1. Since γ > 3/2, we obtain 2θ < 6. Therefore, using the first statement of Lemmas 1 and 3,

the right-hand side of the previous inequality vanishes, which leads to lim supε→0 ∥ℙ⊥vε
⊥∥L2

loc(ℝ+;L2(𝕋3)) ≤
∥ℙ⊥v⊥∥L2

loc(ℝ+;L2(𝕋3)) ≥ lim infε→0 ∥ℙ⊥vε
⊥∥L2

loc(ℝ+;L2(𝕋3)) and to ℙ⊥vε
⊥ → ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;L2(𝕋3))−
strong, by Proposition 3.32 in [7]. This strong convergence in L2 allows to prove the fourth statement of

Lemma 3 by using some interpolation inequalities. Indeed, using Gagliardo–Nirenberg inequality in space

and Cauchy-Schwarz inequality in time, we obtain

∥ℙ⊥v
ε
⊥ − v⊥∥L2

loc(ℝ+;Lp1 (𝕋3)) ≲ ∥ℙ⊥v
ε
⊥ − v⊥∥1/2

L2
loc(ℝ+;Ḣ1(𝕋3))

∥ℙ⊥v
ε
⊥ − v⊥∥1/2

L2
loc(ℝ+;Lp0 (𝕋3))

, (46)

with 1/p1 = 1/12 + 1/(2p0) and ∥ℙ⊥vε
⊥ − v⊥∥L2

loc(ℝ+;Ḣ1(𝕋3)) < ∞. Iterating inequality (46), we obtain a

sequence of indices pn such that 1/pn+1 = 1/12+1/(2pn), with p0 = 2, hence its limit p∞ = 6. This justifies

the first part (strong convergence in Lp) of the fourth statement of Lemma 3. For the second part of this

statement, again, using Gagliardo–Nirenberg inequality in space (with not necessarily integers [8,9]) and

Cauchy-Schwarz inequality in time, we obtain

∥ℙ⊥v
ε
⊥ − v⊥∥L2

loc(ℝ+;Hs1 (𝕋3)) ≲ ∥ℙ⊥v
ε
⊥ − v⊥∥1/2

L2
loc(ℝ+;H1(𝕋3))

∥ℙ⊥v
ε
⊥ − v⊥∥1/2

L2
loc(ℝ+;Hs0 (𝕋3))

, (47)

with s1 = 1/2 + s0/2 and ∥ℙ⊥vε
⊥ − v⊥∥L2

loc(ℝ+;H1(𝕋3)) < ∞. Iterating inequality (47), we obtain a sequence

of indices sn such that sn+1 = 1/2 + sn/2, with s0 = 0, hence its limit s∞ = 1. This justifies the second

part (strong convergence in Hs) of the fourth statement of Lemma 3.
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We finish with the proof the seventh statement. By triangular inequality and continuity of ℙ⊥ in

Lα(Ω;ℝ2), for 1 < α < ∞, we obtain

∥ℙ⊥(ρεvε
⊥ − v⊥)∥L2

loc(ℝ+;Lq(𝕋3)) ≤ ∥ℙ⊥v
ε
⊥ − v⊥∥L2

loc(ℝ+;Lq(𝕋3)) + ∥ρεvε
⊥ − vε

⊥∥L2
loc(ℝ+;Lq(𝕋3)).

Using the fourth and sixth assertions of Lemma 3, and since 6/5 < q < 6 (because 1/q = 1/γ + 1/6, and

3/2 < γ < ∞) this inequality allows to conclude. □

4.4. Passage to the limit in the equation for Bε
⊥

Here, we justify the passage to the limit in (23) for Bε
⊥. Let us start with the initial condition term.

From the discussion about the properties of sequences of initial conditions in Section 2.3 (in particular the

uniform bound (27) and the resulting convergences), we can pass to the limit, in the distributional sense,

in the initial condition term of (23) to obtain the limit initial condition B0⊥. Next, using on the one hand

the third statement of Lemma 2, and on the other hand the first and the second statements of Lemma 3,

we can pass to the limit, in the distributional sense, in all linear and nonlinear terms of equations (23) and

(25) to obtain the first equation of (12) and equation (15) in the sense of distributions.

4.5. Passage to the limit in the equation for ρεvε
⊥

Here, we justify the passage to the limit in equation (21) for ρεvε
⊥, in several steps. We start by recalling

some basic tools. With Ω being either 𝕋3 or ℝ3, we introduce the linear differential operator

ℒ := −
(︄

0 cε ∇⊥·
t∇⊥ 0

)︄
, (48)

defined on 𝒟′
0(Ω;ℝ) × 𝒟′(Ω;ℝ2), where 𝒟′

0(Ω;ℝ) = {ϕ ∈ 𝒟′(Ω;ℝ) |
∫︁

Ω
dxϕ = 0}, and such that ℒU =

− t(cε∇⊥ · Φ, t∇⊥ϕ), with U ≡ t(ϕ, tΦ) ∈ 𝒟′
0(Ω;ℝ) × 𝒟′(Ω;ℝ2). Here cε := bε + 1/ρε, with bε := b(ρε)γ−1.

Since for ε small enough ρε ∈ (1/2, 3/2), there exist constants 0 < c ≤ c̄ < ∞, such that c ≤ cε ≤ c̄, and

cε → c = 1 + b = 1 + aγ.

We claim that ℒ generates a one-parameter group of isometry {𝒮(τ) := exp(τℒ); τ ∈ ℝ}, fromHα(Ω;ℝ)×
Hα(Ω;ℝ2) into itself with the norm |||U |||2Hα(Ω) := ∥ϕ∥2

Hα(Ω) + cε∥Φ∥2
Hα(Ω), for all α ∈ ℝ. Indeed, this comes

from the fact that the operator ℒ is skew-adjoint for the scalar product ⟨⟨· , ·⟩⟩ of L2(Ω;ℝ)×L2(Ω;ℝ2), defined

by ⟨⟨U, V ⟩⟩ = ⟨ϕ, ψ⟩L2(Ω)+c
ε⟨Φ,Ψ⟩L2(Ω), where U ≡ t(ϕ, tΦ), V ≡ t(ψ, tΨ), and the notation ⟨·, ·⟩L2(Ω) stands

for the standard scalar product in L2(Ω) for scalar or vector valued functions. This isometry group can also

be directly verified from the Hα-energy estimates of the solutions U(τ) = 𝒮(τ)U0, satisfying the equation

∂τ U(τ) = ℒU(τ), i.e.,

∂τϕ+ cε ∇⊥ · Φ = 0 , ∂τ Φ + ∇⊥ϕ = 0 . (49)

Indeed, we first set Λ = (I − ∆)1/2 and recall that Hα(Ω) = Λ−αL2(Ω). Applying Λα to equations (49), and

taking the L2(Ω) scalar product of the result with Λαϕ (resp. cεΛαΦ) for the first (resp. second) equation

of (49), we obtain

d

dt
|||U |||2Hα(Ω) =

d

dt
⟨⟨ΛαU,ΛαU⟩⟩ =

d

dt

(︁
∥Λαϕ∥2

L2(Ω) + cε∥ΛαΦ∥2
L2(Ω)

)︁

=

∫︂

Ω

dx cε
(︁
Λαϕ∇⊥ · ΛαΦ + ΛαΦ · ∇⊥Λαϕ

)︁
= 0 .
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In order to understand some properties of the group 𝒮(τ), we denote by 𝒮1(τ) ∈ ℝ and 𝒮2(τ) ∈ ℝ2 the

components of 𝒮(τ). Observe that
∫︁

Ω
dx𝒮1(τ)U and ℙ⊥𝒮2(τ)U are independent of τ ∈ ℝ. In particular

𝒮(τ)U is independent of τ , if ℙ⊥Φ = 0 (i.e., ∇⊥ · Φ = 0) and if ϕ is constant. From (49) the operator ℒ is

equivalent to the transverse wave operator. Indeed, the equation ∂τ U = ℒU is equivalent to the scalar wave

equations (∂2
τ −cε∆⊥)ϕ = 0, and (∂2

τ −cε∆⊥)φ = 0, where we have used the Helmholtz–Hodge decomposition

Φ = ℙ⊥Φ+∇⊥φ, with
∫︁

Ω
dxφ = 0, ∀ τ ∈ ℝ, and observing that ℙ⊥Φ is a constant determined by the initial

conditions (since ∂τℙ⊥Φ = 0 from the second equation of (49)).

The key to justify the limit of the equation for ρεvε
⊥, is to construct an approximate solution to the MHD

equations (20)-(25), which allows us to pass to the limit in both singular terms and nonlinear terms. Such

a construction is given by the following lemma.

Lemma 4. Let us define Uε := t(ϕε, tΦε), where ϕε := bεϱε+Bε, and Φε := ℚ⊥(ρεvε
⊥), with ϱε := (ρε−ρε)/ε,

and bε := b(ρε)γ−1. Let 𝔰 be the same positive real number as in Lemma 3, i.e., 𝔰 := max{1/2, 3/γ − 1} ∈
[1/2, 1). Then,

1. There exist functions 𝒰 = t(ψ, tΨ) ∈ L2
loc(ℝ+;L2(𝕋3;ℝ3)), and ℛε ∈ L2

loc(ℝ+;H−σ(𝕋3,ℝ3)), with

𝔰 < σ < (5/2)+, such that

Uε = 𝒮(t/ε) 𝒰 + ℛε, with ℛε −−→ 0 in L2
loc(ℝ+;H−σ(𝕋3))−strong . (50)

2. There exists a function π0 := ∆−1
⊥ ∇⊥ · ℚ⊥u0⊥ ∈ L2(𝕋 ;H1(𝕋2

⊥)), as well as a function π1 ∈
L2

loc(ℝ+;H−r(𝕋3;ℝ)), with r >
(︁

5
2

)︁+
, such that

ϕε/ε −−⇀ δ0(t) ⊗ π0 + π1 in H−1(ℝ+;H−r(𝕋3))−weak . (51)

3. The limit point (B , ϱ) satisfies the relation B + bϱ = 0, for a.e. (t, x) ∈]0,+∞[×𝕋3.

Proof. On the one hand, applying the projector ℚ⊥ to the perpendicular component of the second equation

of (3) (the one for ρεvε
⊥) to form an equation for Φε := ℚ⊥(ρεvε

⊥) and on the other hand combining the

first equation of (3) (the one for ρε) and the parallel component of the second equation of (3) (the one for

Bε) to form an equation for ϕε := bεϱε +Bε, we obtain the following equation for Uε := t(ϕε, tΦε),

∂tU
ε − 1

ε
ℒUε = F ε , (52)

where

F ε :=

(︄
F ε

1

F ε
2

)︄
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F ε
1 = − bε∂ (ρεvε) + (ρε)−1∇⊥ · ℚ⊥(ϱεvε

⊥) −Bε∇ε · vε

− (vε · ∇ε)Bε + (Bε · ∇ε)vε + (ηε
⊥∆⊥ + ηε∆ )Bε ,

F ε
2 = − ℚ⊥∇ε · (ρεvε

⊥ ⊗ vε) − (γ − 1)∇⊥Π2(ρε) − 1
2∇⊥(|Bε|2) + ∂ ℚ⊥B

ε
⊥

+ ℚ⊥∇ε · (Bε
⊥ ⊗Bε) + µε

⊥∇⊥(∇⊥ · vε
⊥) + µε∆ ℚ⊥v

ε
⊥ + λε∇⊥(∇ε · vε) .

(53)

We start with point 1 of Lemma 4. We aim at showing (50) in two steps. The first step concerns the

existence of a filtered profile 𝒰 = t(ψ, tΨ), while the second one establishes its regularity in L2.

Step 1. Here, we show that the filtered solution t(ψε, tΨε) ≡ 𝒰ε := 𝒮(−t/ε)Uε is relatively compact in

L2
loc(ℝ+;H−σ(𝕋3)) for σ > 𝔰. For this, we first show uniform bounds for Uε in suitable functional spaces.

Second, we use the fact that the group 𝒮 is an isometry in Hα (α ∈ ℝ) in order to obtain similar bounds on

( 𝒰ε, ∂t 𝒰ε). Next, we invoke an Aubin–Lions theorem to obtain compactness of the sequence 𝒰ε and the

existence of the filtered profile 𝒰 . Finally, using the isometry 𝒮 and the averaged profile 𝒰 , we construct
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an approximation to Uε, with an error estimate which converges strongly as indicated in (50). In this way,

we bypass the singularity in 1/ε in (52).

Recall that κ = min{2, γ}. Since ϱε ∈ L∞
loc(ℝ+;Lκ(𝕋3)) and Bε ∈ L∞

loc(ℝ+;L2(𝕋3)), we can assert that

ϕε ∈ L∞
loc(ℝ+; (Lκ + L2)(𝕋3)). From Sobolev embeddings and a duality argument, we obtain L3/2(𝕋3) ↪→

H−α(𝕋3), with α ≥ 1/2. Since κ > 3/2, then Lκ(𝕋3) ↪→ H−α(𝕋3) and (Lκ + L2)(𝕋3) ↪→ H−α(𝕋3).

Since α can be chosen such that α ≤ 𝔰, then (Lκ + L2)(𝕋3) ↪→ H−𝔰(𝕋3) and ϕε ∈ L∞
loc(ℝ+;H−𝔰(𝕋3)) ↪→

L2
loc(ℝ+;H−𝔰(𝕋3)). From the fifth statement of Lemma 3, ρεvε

⊥ ∈ L2
loc(ℝ+;H−𝔰(𝕋3)). Since ℚ⊥ (resp. 𝒮)

is a continuous map (resp. an isometry) in Hα, with α ∈ ℝ, then 𝒰ε ∈ L2
loc(ℝ+;H−𝔰(𝕋3)).

We are now going to obtain a bound for ∂t 𝒰ε. Using (52), a straightforward computation shows that

∂t 𝒰ε = 𝒮(−t/ε)F ε. Let us show that F ε ∈ L2
loc(ℝ+;H−r(𝕋3)) for r > 5/2 + δ, and any δ > 0. We will then

obtain ∂t 𝒰ε ∈ L2
loc(ℝ+;H−r(𝕋3)), because 𝒮 is an unitary group in Hα, with α ∈ ℝ.

Let us start with F ε
1 . First, observe that Bε∇ε · vε + (vε · ∇ε)Bε − (Bε · ∇ε)vε = [∇ε × (Bε × vε)] ∈

L2
loc(ℝ+;W−1,3/2(𝕋3)) by using Hölder inequality and the energy estimate. Obviously, from the energy

estimate, the last two diffusive terms of F ε
1 belong to L2

loc(ℝ+;H−1(𝕋3)). Using Uε ∈ L2
loc(ℝ+;H−𝔰(𝕋3)),

the first term of F ε
1 is in L2

loc(ℝ+;H−𝔰−1(𝕋3)). It remains to bound the second term of F ε
1 . Using Hölder

inequality, we obtain ϱεvε ∈ L2
loc(ℝ+;L𝔮(𝕋3)) with 1/𝔮 = 1/κ + 1/6. Observe that 𝔮 ∈ (6/5, 3/2] since

κ ∈ (3/2, 2]. The Sobolev embedding H 𝔰̃(𝕋3) ↪→ L𝔮
′

(𝕋3), with 1/𝔮′ = 1 − 1/𝔮 = (5κ − 6)/(6κ) and

𝔰̃ ≥ 3/κ − 1 ∈ [1/2, 1), implies by duality that L𝔮(𝕋3) ↪→ H−𝔰̃(𝕋3). Since 3/γ − 1 ≥ 3/κ − 1, we can

choose 𝔰̃ = 𝔰. Therefore, the second term of F ε
1 is bounded in L2

loc(ℝ+;H−𝔰−1(𝕋3)), and we obtain F ε
1 ∈

L2
loc(ℝ+; (H−𝔰−1 +W−1,3/2 +H−1)(𝕋3)) ↪→ L2

loc(ℝ+;H−𝔰−1(𝕋3)), where the previous injection results from

Sobolev embeddings.

We continue with an estimate for F ε
2 . From the continuous embedding ℚ⊥(L1(𝕋3)) ↪→ W−δ,1(𝕋3) which

works for all δ > 0, and the energy estimate, the first and fifth terms of F ε
2 are uniformly bounded in

L2
loc(ℝ+;W−1−δ,1(𝕋3)). From the energy estimate, the second and third terms of F ε

2 are uniformly bounded

in L2
loc(ℝ+;W−1,1(𝕋3)). From the following continuous embedding, ∀α ≥ 0, ℚ⊥(Hα(𝕋3)) ↪→ Hα(𝕋3), and

the energy estimate, the fourth term of F ε
2 is uniformly bounded in L2

loc(ℝ+;L2(𝕋3)). Obviously, from the

energy estimate, the last three diffusive terms of F ε
2 belong to L2

loc(ℝ+;H−1(𝕋3)). Therefore, we obtain

F ε
2 ∈ L2

loc(ℝ+; (W−1−δ,1 + W−1,1 + H−1 + L2)(𝕋3)) ↪→ L2
loc(ℝ+;H−r(𝕋3)), with r > 5/2 + δ, by using

Sobolev embeddings.

Now, using Lemma 13 of Appendix A, with 𝔅0 = H−𝔰(𝕋3), 𝔅 = H−σ(𝕋3), 𝔅1 = H−r(𝕋3), 𝔰 < σ < r,

and p = q = 2, we obtain that 𝒰ε is compact in L2
loc(ℝ+;H−σ(𝕋3)). We deduce that there exists 𝒰 ≡

t(ψ, tΨ) ∈ L2
loc(ℝ+;H−σ(𝕋3)) such that 𝒰ε converges strongly to 𝒰 in L2

loc(ℝ+;H−σ(𝕋3)). Since ℙ⊥Ψε = 0

(resp.
∫︁
𝕋3 dxψ

ε = 0), ∀ε ≥ 0, then ℙ⊥Ψ = 0 (resp.
∫︁
𝕋3 dxψ = 0). Since the group 𝒮 is an isometry in Hα

(α ∈ ℝ), we finally obtain (50).

Step 2. To show that 𝒰 ∈ L2
loc(ℝ+;L2(𝕋3;ℝ3)), we use the auxiliary variable ˜︁Uε := t(ϕε, tℚ⊥vε

⊥). We

first establish two points which allow us to deal with a truncated version of ˜︁Uε instead of ˜︁Uε itself.

1) From the first statement of Lemma 1 and estimates (42) (which imply, via the De la Vallée Poussin

criterion [16], that ϱε is spatially uniformly integrable in L3/2(𝕋3), uniformly in time on any compact time

interval), we obtain ∥ϱε − ϱε
1ρε≤R∥L∞

loc(ℝ+;Lκ(𝕋3)) → 0, as ε → 0, where R = +∞ and κ = 2, if γ ≥ 2; and

where R ∈ (3/2,+∞) with R fixed, and κ = γ, if γ < 2. Moreover, since Bε is 2-uniformly integrable in

space-time, we obtain, from the first statement of Lemma 1, ∥Bε −Bε
1ρε≤R∥L2

loc(ℝ+;L2(𝕋3)) → 0, as ε → 0,

for any R ∈ (1,+∞]. Indeed, the 2-uniform integrability comes from the Gagliardo–Nirenberg interpola-

tion inequality ∥Bε∥L10/3(ℝ+×𝕋3) ≤ ∥Bε∥2/5
L∞(ℝ+,L2(𝕋3))∥∇Bε∥3/5

L2(ℝ+,L2(𝕋3)) < ∞ (from uniform bounds of

Lemma 2) and the De la Vallée Poussin criterion.

2) From the sixth statement of Lemma 3, we obtain ∥ρεvε
⊥ − vε

⊥∥L2
loc(ℝ+;Lq(𝕋3)) → 0, as ε → 0, for

1/q = 1/γ + 1/6.

We now set ˜︁Uε
R := t(ϕε

R,
tℚ⊥vε

⊥), where ϕε
R := (bεϱε + Bε)1ρε≤R. Then, from Step 1, and the points 1)

to 2) of Step 2, we obtain 𝒮(−t/ε)˜︁Uε
R → 𝒰 in L2

loc(ℝ+;H−σ(𝕋3))−strong. Indeed, we have



ARTICLE IN PRESS

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

JID:MATPUR AID:103877 /FLA [m3L; v1.381] P.23 (1-42)

N. Besse, C. Cheverry / J. Math. Pures Appl. ••• (••••) •••••• 23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

S(−t/ε)˜︁Uε
R = 𝒰 + S(−t/ε) t

(︁
[ϕε

R − ϕε], tℚ⊥[(1 − ρε)vε
⊥]
)︁

+ 𝒮(−t/ε)ℛε. (54)

Since the group 𝒮 is an isometry in Hα (α ∈ ℝ), from the points 1) to 2) of Step 2, the second term of the

right-hand side of (54) vanishes as ε → 0 in L2
loc(ℝ+; (Lκ + L2)(𝕋3;ℝ) × Lq(𝕋3;ℝ2))−strong, and thus in

L2
loc(ℝ+;H−σ(𝕋3))−strong since (Lκ + L2)(𝕋3) ↪→ H−α(𝕋3) with κ > 3/2, and Lq(𝕋3) ↪→ H−σ(𝕋3) with

1/q = 1/γ+ 1/6, and where (α,σ) can be chosen such that 1/2 ≤ α ≤ 𝔰 ≤ σ < σ. From (50), the third term

of the right-hand side of (54) vanishes as ε → 0 in L2
loc(ℝ+;H−σ(𝕋3))−strong.

Finally, the first assertions of Lemma 2 and Lemma 3, and inequality (42) show that ˜︁Uε
R is bounded in

L2
loc(ℝ+;L2(𝕋3;ℝ3)), uniformly with respect to ε. Since the group 𝒮 is an isometry in Hα (α ∈ ℝ), we

deduce that 𝒰 ∈ L2
loc(ℝ+;L2(𝕋3;ℝ3)), which ends the proof of the first point of Lemma 4.

We now turn to the proof of the point 2 of Lemma 4. Using the equation (52) on the component Φε, we

can see that ϕε/ε satisfies, ∀ψ⊥ ∈ H1
c (ℝ+;Hr(𝕋3;ℝ2)), with r > 0 large enough (specified further),

∫︂

ℝ+

dt

∫︂

𝕋3

dx
ϕε

ε
∇⊥ · ψ⊥ = −

∫︂

𝕋3

dxℚ⊥(ρε
0v

ε
0⊥) · ψ⊥(0) −

∫︂

ℝ+

dt

∫︂

𝕋3

dx (ρε − 1)vε
⊥ · ℚ⊥∂tψ⊥

−
∫︂

ℝ+

dt

∫︂

𝕋3

dx vε
⊥ · ℚ⊥∂tψ⊥ −

∫︂

ℝ+

dt

∫︂

𝕋3

dxF ε
2 · ψ⊥ = T ε

0 + T ε
1 + T ε

2 + T ε
3 . (55)

From properties of initial conditions (see Section 2.3) we have ℚ⊥(ρε
0v

ε
0⊥) ⇀ ℚ⊥u0⊥ = ℚ⊥v0⊥ in

L2γ/(γ+1)(𝕋3)−weak, and u0⊥ = v0⊥ ∈ L2(𝕋3). Defining π0 := ∆−1
⊥ ∇⊥ · ℚ⊥u0⊥ ∈ L2(𝕋 ;H1(𝕋2

⊥)),

we then have ∇⊥π0 = ℚ⊥u0⊥ ∈ L2(𝕋3). From Hölder inequality, we obtain |T ε
0 | ≤ ∥ρε

0v
ε
0⊥∥L2γ/(γ+1)(𝕋3)

∥ψ⊥(0)∥L2γ/(γ−1)(𝕋3). This and continuous Sobolev embeddings, imply that there exists a constant 𝒞0 (uni-

form in ε) such that |T ε
0 | ≤ 𝒞0∥ψ⊥∥H1

c (ℝ+;Hr(𝕋3)), with r > (5/2)+. From Hölder inequality we obtain

|T ε
1 | ≤ ∥ρε − 1∥L∞

loc(ℝ+;Lγ(𝕋3))∥vε
⊥∥L2

loc(ℝ+;L6(𝕋3))∥∂tℚ⊥ψ⊥∥L2(ℝ+;Lq′ (𝕋3)), with 1/q′ = 1 − 1/γ − 1/6. Then

first, from Lemmas 1 and 3, we obtain T ε
1 → 0, as ε → 0. Second, using continuous Sobolev embed-

dings, there exists a constant 𝒞1 (uniform in ε) such that |T ε
1 | ≤ 𝒞1∥ψ⊥∥H1

c (ℝ+;Hr(𝕋3)), with r > (5/2)+.

Using Lemma 3 (in particular ℚ⊥v⊥ = 0), we obtain T ε
2 → 0, as ε → 0. From Hölder inequality, we ob-

tain |T ε
2 | ≤ ∥vε

⊥∥L2
loc(ℝ+;L2(𝕋3))∥∂tψ⊥∥L2(ℝ+;L2(𝕋3)), which implies, together with Lemma 3 and continuous

Sobolev embeddings, that there exists a constant 𝒞2 (uniform in ε) such that |T ε
2 | ≤ 𝒞2∥ψ⊥∥H1

c (ℝ+;Hr(𝕋3)),

with r > (5/2)+. From the Step 1 of this proof, we know that F ε
2 ∈ L2

loc(ℝ+;H−r(𝕋3)), for r > 5/2 + δ,

and any δ > 0. Since ∇⊥ × F ε
2 = 0 in 𝒟′(ℝ∗

+ × 𝕋3), there exists fε
2 = ∆−1

⊥ ∇⊥ · F ε
2 ∈ L2

loc(ℝ+;H−r(𝕋3))

(uniformly in ε) such that F ε
2 = ∇⊥fε

2 . Therefore, there exists a function π1 ∈ L2
loc(ℝ+;H−r(𝕋3)) such that

fε
2 ⇀ π1 in L2

loc(ℝ+;H−r(𝕋3))−weak. Moreover, we deduce that there exists a constant 𝒞3 (uniform in ε)

such that |T ε
3 | ≤ 𝒞3∥ψ⊥∥H1

c (ℝ+;Hr(𝕋3)), with r > (5/2)+. In summary, we have shown that there exists a

constant 𝒞 :=
∑︁

i=0,...,3 𝒞i, uniform in ε, such that for r > (5/2)+,

⃓⃓
⃓⃓
∫︂

ℝ+

dt

∫︂

𝕋3

dx∇⊥
(︂ϕε

ε

)︂
· ψ⊥

⃓⃓
⃓⃓ =

⃓⃓
⃓⃓
∫︂

ℝ+

dt

∫︂

𝕋3

dx
ϕε

ε
∇⊥ · ψ⊥

⃓⃓
⃓⃓ ≤ 𝒞∥ψ⊥∥H1

c (ℝ+;Hr(𝕋3)) ,

which means that ∇⊥(ϕε/ε) and a fortiori ϕε/ε belong to H−1(ℝ+;H−r(𝕋3)), uniformly in ε. Moreover,

we have proved that

∫︂

ℝ+

dt

∫︂

𝕋3

dx
ϕε

ε
∇⊥ · ψ⊥ −−→

∫︂

ℝ+

dt

∫︂

𝕋3

dxπ1∇⊥ · ψ⊥ +

∫︂

𝕋3

dxπ0∇⊥ · ψ⊥(0) .
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These two properties establish the point 2 of Lemma 4. Using (51), and Lemmas 1 and 2, we obtain that

ϕε ⇀ ϕ = bϱ + B = 0 in 𝒟′(ℝ∗
+ × 𝕋3), and bϱ + B = 0 in L∞

loc(ℝ+;Lκ(𝕋3)), with κ > 3/2, which justify

the point 3 of Lemma 4. □

We are now able to justify the passage to the limit in equation (21) for ρεvε
⊥. Let us start with the initial

condition term. From the discussion about the properties of sequences of initial conditions in Section 2.3

(in particular the uniform bound (27) and the resulting convergences), we can pass to the limit, in the

distributional sense, in the initial condition term of (21) to obtain the limit point u0⊥ = v0⊥ = ℙ⊥u0⊥ +

ℚ⊥u0⊥. Using (51) in equation (21), we observe that the term −∇⊥π0 = −ℚ⊥u0⊥ (coming from the weak

limit of ϕε/ε) cancels the irrotational par ℚ⊥u0⊥ of the previous limit point u0⊥, so that the limit initial

condition is simply ℙ⊥u0⊥ = ℙ⊥v0⊥. This is consistent with the fact that in the limit equation the test

function ψ⊥ can be chosen divergence-free, i.e., ℙ⊥ψ⊥ = ψ⊥. Moreover, according to (6), the two conditions

∇⊥ · v0⊥ = 0 (or ∇⊥ · u0⊥ = 0, since u0⊥ = v0⊥) and B0 + bϱ0 = 0 are related to a preparation of the

initial data to avoid fast time oscillations. Since the limit initial condition ℙ⊥u0⊥ comes naturally without

any preparation, then in our framework, we can deal with general data satisfying ∇⊥ · u0⊥ = ∇⊥ · v0⊥ ̸≡ 0.

We next deal with the linear terms of (21). Using weak convergence of vε
⊥ (resp. Bε) yielded by the

first statement of Lemma 3 (resp. Lemma 2) we can pass to the limit, in the distributional sense, in all

linear diffusive terms (resp. the linear advection term Bε
⊥ · ∂ ψ⊥) of (21). Using weak convergence for Bε

and strong convergence for Bε
⊥, which are supplied by Lemma 2, we can pass to the limit in the quadratic

nonlinear term Bε
⊥ ⊗ Bε : Dεψ⊥ to obtain the term B⊥ ⊗ B⊥ : D⊥ψ⊥. Using the identity 𝕀⊥ = ℙ⊥ + ℚ⊥,

for the term involving time derivative in (21), we obtain, ∀ψ⊥ ∈ C ∞
c (ℝ+ × 𝕋3;ℝ2),

∫︂

ℝ+

∫︂

𝕋3

dx ρεvε
⊥ · ∂tψ⊥ = −T ε

1 − T ε
2 +

∫︂

ℝ+

dt

∫︂

𝕋3

dxℙ⊥v
ε
⊥ · ∂tψ⊥ , (56)

where the terms T ε
1 and T ε

2 are the same as in (55). For the same reasons as the ones invoked in the proof

of the point 2 of Lemma 4, T ε
1 and T ε

2 vanish as ε → 0. Therefore, using (56) and Lemma 2 (in particular

ℙ⊥v⊥ = v⊥), we obtain that ∂t(ρ
εvε

⊥) ⇀ ∂tv⊥ in 𝒟′(ℝ∗
+ × 𝕋3). Now in equation (21), we simultaneously

deal with the magnetic pressure term |Bε|2/2, the singular fluid pressure term pε/ε2 (with pε = a(ρε)γ),

and the singular magnetic term Bε/ε. Setting 𝔭ε = pε/ε2 + Bε/ε + |Bε|2/2, this term can be rewritten as

𝔭ε = ϕε/ε+a(ρε)γ/ε2+πε
2, with πε

2 = (γ−1)Π2(ρε)+|Bε|2/2. In 𝔭ε, the constant term a(ρε)γ/ε2 is irrelevant

because it disappears by spatial integration in (21). From the point 2 of Lemma 4, we obtain ϕε/ε ⇀ π1

in 𝒟′(ℝ∗
+ × 𝕋3). In fact, from (51) we have ϕε/ε ⇀ δ0(t) ⊗ π0 + π1 in H−1(ℝ+, H

−r(𝕋3))−weak, but as

already mentioned above, the term δ0(t) ⊗π0 cancels the irrotational part ℚ⊥u0⊥ of the limit term u0⊥, so

that the limit initial condition is ℙ⊥u0⊥ = ℙ⊥v0⊥. From energy inequality (30)-(33) with the pressure term

Π2, we obtain πε
2 ∈ L∞

loc(ℝ+;L1(𝕋3)), uniformly with respect to ε. Then, by weak compactness, there exists

a function π2 ∈ L∞
loc(ℝ+;L1(𝕋3)) such that πε

2 ⇀ π2 in L∞
loc(ℝ+;L1(𝕋3))−weak–∗. Therefore, we obtain

𝔭ε ⇀ (π1 + π2) in 𝒟′(ℝ∗
+ × 𝕋3).

Remark 1. Even if we have the strong convergence of Bε
⊥ in L2

loc(ℝ+;L2(𝕋3))) and a uniform bound in

L2
loc(ℝ+;H1(𝕋3)) for Bε, we do not have |Bε|2 ⇀ |B|2 in 𝒟′(ℝ∗

+×𝕋3). The reason of this lack of convergence

comes from the fact that ∂tB is not bounded, uniformly with respect to ε, in some suitable functional spaces.

Indeed, equation (24) for Bε contains a singular term in 1/ε, which prevents such a boundedness. In other

words, this is fast time oscillations in the parallel direction that prevent time compactness and thus, such

a convergence.

It remains to pass to the limit in the nonlinear term ρεvε
⊥ ⊗vε in (21). This is the purpose of the following

lemma.
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Lemma 5. There exists a distribution π3 ∈ 𝒟′(ℝ∗
+ × 𝕋3), such that

∇ε · (ρεvε
⊥ ⊗ vε) −−⇀ ∇⊥ · (v⊥ ⊗ v⊥) + ∇⊥π3 in 𝒟′(ℝ∗

+ × 𝕋3) .

Using Lemma 5, we can complete the justification of the passage to the limit, in the distributional sense,

in equations (21) to obtain the second equation of (16) in the sense of distributions.

Remark 2. In (12) the pressure term π, which can be seen as a Lagrange multiplier ensuring the constraint

∇⊥ ·v⊥ = 0, comes from the following three contributions, π1, π2 and π3. The pressure term π1 comes from

the singular fluid pressure term and the singular magnetic term. The pressure π2 comes from the non-singular

fluid and magnetic pressure terms. The pressure term π3, which comes from the Reynolds stress tensor,

results from taking into account the resonant interactions of the compressible modes on the incompressible

mode, while the non-resonant interaction terms vanish in the limit by using Riemann–Lebesgue or stationary

phase arguments.

Proof of Lemma 5. Observe first the following decomposition, ∀ψ⊥ ∈ C ∞
c (ℝ+ × 𝕋3;ℝ2),

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρεvε
⊥ ⊗ vε : Dεψ⊥ =

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρεvε
⊥ ⊗ vε

⊥ : D⊥ψ⊥

+ ε

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρεvεvε
⊥ · ∂ ψ⊥ = Γ̄ε

1 + Γ̄ε
2 .

(57)

Using Hölder inequality, we obtain |Γ̄ε
2| ≤ ε∥ρε|vε|2∥L∞

loc(ℝ+;L1(𝕋3))∥∂ ψ⊥∥L1(ℝ+;L∞(𝕋3)). Therefore, exploit-

ing the energy estimate, we have Γ̄ε
2 → 0, as ε → 0.

To deal with the term Γ̄ε
1, we follow the spirit of the proof of the convergence result in the part III of

[34]. For this we consider the following decomposition

Γε
1 := ∇⊥ · (ρεvε

⊥ ⊗ vε
⊥) =

5∑︂

i=1

Γε
1i = ∇⊥ ·

(︁
ρεvε

⊥ ⊗ ℙ⊥v
ε
⊥ + ℙ⊥(ρεvε

⊥) ⊗ ℚ⊥v
ε
⊥

+ (ℚ⊥[ρεvε
⊥] −Φε) ⊗ ℚ⊥v

ε
⊥ + Φε ⊗ (ℚ⊥v

ε
⊥ −Φε) +Φε ⊗Φε

)︁
,

(58)

where we set Φε := 𝒮2(t/ε) 𝒰 . We successively deal with the terms Γε
1i, for i ∈ {1, . . . , 5}. We start with

Γε
11. Using the fourth and fifth assertions of Lemma 3 with s = σ ∈ [𝔰, 1), we obtain Γε

11 ⇀ ∇⊥ · (v⊥ ⊗v⊥) in

𝒟′(ℝ∗
+ ×𝕋3), which gives the first part of the limit in Lemma 5. We continue with the term Γε

12. Using the

third and seventh assertions of Lemma 3, since 1/q + 1/6 < 1, we obtain Γε
12 ⇀ 0 in 𝒟′(ℝ∗

+ × 𝕋3). For the

term Γε
13, we observe that ℚ⊥[ρεvε

⊥] −Φε = ℛε
2, where the term ℛε

2 ∈ ℝ2 is the second component of the

error term ℛε = t(ℛε
1,

tℛε
2) involved in equation (50) of Lemma 4. Using (50) with σ = 1 and the first or

the third statement of Lemma 3, we obtain Γε
13 ⇀ 0 in 𝒟′(ℝ∗

+ ×𝕋3). We pursue with the term Γε
14. Let Φε

η

be a regularization of Φε obtained by the following way. Using the fact that C ∞
c is dense in L2, we define

Φε
η := 𝒮2(t/ε) 𝒰η, where 𝒰η ∈ C ∞

c (ℝ+ × 𝕋3) is such that ∥ 𝒰η − 𝒰∥L2
loc(ℝ+;L2(𝕋3)) ≤ η, with 0 ≤ η ≪ 1. We

consider the decomposition

Φε ⊗ (ℚ⊥v
ε
⊥ −Φε) = (Φε

η −Φε) ⊗ (ℚ⊥v
ε
⊥ −Φε) +Φε

η ⊗ (ℚ⊥v
ε
⊥ −Φε) =: Rε

1η +Rε
2η . (59)

For the term Rε
1η, using the isometry property of 𝒮, there exists a constant C = C(∥ 𝒰∥L2

loc(ℝ+;L2(𝕋3)))

such that ∥Rε
1η∥L1

loc(ℝ+;L1(𝕋3)) ≤ Cη. For the term Rε
2η, using the isometry of 𝒮, we first observe that

Φε
η ∈ L2

loc(ℝ+;Hm(𝕋3)), with m ≥ 0, and for all η > 0. Second, we claim that ℚ⊥vε
⊥ − Φε → 0 in
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L2
loc(ℝ+;H−σ(𝕋3))−strong, for 𝔰 < σ < (5/2)+. Indeed, ℚ⊥vε

⊥ − Φε = ℛε
2 + ℚ⊥((1 − ρε)vε

⊥), where,

using (50), we have ℛε
2 → 0 in L2

loc(ℝ+;H−σ(𝕋3))−strong. From the sixth statement of Lemma 3, the

continuity of ℚ⊥ in Lq with 1/q = 1/γ + 1/6, and the embedding Lq(𝕋3) ↪→ H−σ(𝕋3) for σ ≥ 𝔰 (cf. proof

of Lemma 3), we obtain ℚ⊥((1 − ρε)vε
⊥) → 0 in L2

loc(ℝ+;H−σ(𝕋3))−strong, for all σ ≥ σ. Therefore, in

the right-hand side of (59), taking first the limit ε → 0 and then the limit η → 0, we obtain Γε
14 ⇀ 0

in 𝒟′(ℝ∗
+ × 𝕋3). It remains to show that Γε

15 ⇀ π3 in 𝒟′(ℝ∗
+ × 𝕋3). For this, using Fourier series, we

can compute explicitly the term Γε
15. We set 𝔘ε ≡ t(ϕε, tΦε) := t(𝒮1(t/ε) 𝒰 , t𝒮2(t/ε) 𝒰) = 𝒮(t/ε) 𝒰 , with

𝒰 = t(ψ, tΨ) ∈ L2
loc(ℝ+;L2(𝕋3)), and such that

∫︁
𝕋3 dxψ = 0, and ℙ⊥Ψ = 0. Since ℙ⊥Ψ = 0, then Ψ = ∇⊥ψ,

with ψ = ∆−1
⊥ ∇⊥ · Ψ ∈ L2

loc(ℝ+;L2(𝕋 ;H1(𝕋2
⊥))). This regularity is deduced from the L2 regularity of 𝒰 .

Similarly, since 𝒮 and ℙ⊥ commute, we obtain
∫︁
𝕋3 dxϕ

ε = 0, and ℙ⊥Φε = 0, so that Φε = ∇⊥φε, with

φε = ∆−1
⊥ ∇⊥ ·Φε. We introduce the Fourier series

ψ =
∑︂

k∈ℤ3

ψk(t)eik·x , Ψ = i
∑︂

k∈ℤ3

k⊥ψk(t)eik·x ,

with ψ0(t) = 0, and

∥{ψk}k∥L2
loc(ℝ+;ℓ2(ℤ3)) + ∥{ψk|k⊥|}k∥L2

loc(ℝ+;ℓ2(ℤ3)) =: 𝒩0 < ∞ , (60)

where the last estimate comes from the L2 regularity of 𝒰 stated in Lemma 4. We denote by 𝔘ε
k =

t(ϕε
k,

tΦε
k = i tk⊥φε

k) the Fourier coefficients of 𝔘ε ≡ t(ϕε, tΦε = ∇⊥φε). Inserting the Fourier series

of 𝔘ε in the linear equation ∂t 𝔘
ε = ℒ𝔘ε/ε, we are led to solve linear second-order ODEs in time for the

Fourier coefficients ϕε
k(t) and φε

k(t), with the inital conditions 𝔘ε
k(0) = 𝒰k(t) and ∂t 𝔘

ε
k(0) = ℒk 𝒰k(t)/ε,

where ℒk = i t(−cεk⊥· , tk⊥). Solving these linear ODEs, we obtain for Φε,

Φε = ∇⊥φ
ε = i

∑︂

k∈ℤ3

eik·x k⊥
{︂
ψk(t) cos

(︁√
cε|k⊥| t

ε

)︁
− 1√

cε|k⊥|ψk(t) sin
(︁√
cε|k⊥| t

ε

)︁}︂
.

We then obtain

Φε ⊗Φε = −
∑︂

k,l∈ℤ3

ei(k+l)·x θε
k(t)θε

l (t)(k⊥ ⊗ l⊥) = −
(︁
Sε

1(t, x) + Sε
2(t, x)

)︁
, (61)

with θε
k(t) = ψk(t) cos(

√
cε|k⊥|t/ε) −

(︁
ψk(t)/(

√
cε|k⊥|)

)︁
sin(

√
cε|k⊥|t/ε) ∈ L2

loc(ℝ+), ∀ k ∈ ℤ3, and where

Sε
1 (resp. Sε

2) is the sum of (k, l) on the subset Λ1 = {(k, l) ∈ ℤ3 × ℤ3 ; |k⊥| ≠ |l⊥|} (resp. Λ2 = {(k, l) ∈
ℤ3 × ℤ3 ; |k⊥| = |l⊥|}). We next show that Sε

1 ⇀ 0 in 𝒟′(ℝ∗
+ × 𝕋3), and that ∇⊥ · Sε

2 is a perpendicular

gradient. We first deal with Sε
1 . Let φ(t, x) = χ(t)λ(x) ∈ C ∞

c (ℝ+ × 𝕋3). Then we obtain,

⟨Sε
1 , φ⟩ = |𝕋3|

∑︂

(k,l)∈Λ1

λk+l (k⊥ ⊗ l⊥)

∫︂

ℝ+

dt θε
k(t)θε

l (t)χ(t) =
∑︂

(k,l)∈Λ1

ℋε
kl , (62)

where λk is the Fourier coefficients of λ. Using Cauchy–Scwharz inequality in time, we obtain |ℋε
kl| ≤

|𝕋3|∥χ∥L∞(ℝ+)dkdl|λk+l|, with dk := (|k⊥|∥ψk∥L2
loc(ℝ+) + ∥ψk∥L2

loc(ℝ+)) max{1, 1/
√
c} ≥ |k⊥| ∥θε

k∥L2
loc(ℝ+).

Using this estimate, bound (60), and Cauchy–Schwarz inequality for one of the infinite sums in (62), we

obtain |⟨Sε
1 , φ⟩| ≤ 2𝒩 2

0 |𝕋3| ∥χ∥L∞(ℝ+) max{1, 1/
√
c}2
∑︁

k∈ℤ3 |λk|. This last sum converges because, from

the regularity of λ, the Fourier coefficients λk decrease enough with respect to k. Then Sε
1 is summable

in 𝒟′(ℝ∗
+ × 𝕋3). Now, using the Riemann–Lebesgue theorem and the condition |k⊥| ≠ |l⊥| for (k, l) ∈ Λ1,

recombining the oscillating products involving cos and sin, we easily show that θε
kθ

ε
l ⇀ 0 in L1

loc(ℝ+)−weak.

Using this vanishing limit and the summability of Sε
1 , we obtain Sε

1 ⇀ 0, in 𝒟′(ℝ∗
+ × 𝕋3). We next deal
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with Sε
2 . With the same arguments as those used for Sε

1 , Sε
2 is summable in 𝒟′(ℝ∗

+ × 𝕋3). It remains to

show that ∇⊥ · Sε
2 is a perpendicular gradient. Symmetrizing the sum Sε

2 in (k, l) (such that the expression

of the general term remains invariant by exchanging k and l), using the change of variable l = n− k in Sε
2 ,

and applying the divergence operator ∇⊥· to Sε
2 , we obtain

∇⊥ · Sε
2 =

i

2

∑︂

n∈ℤ3

ein·x
∑︂

|k⊥|=|n⊥− k⊥|
{(k⊥ ⊗ [n⊥ − k⊥]) + ([n⊥ − k⊥] ⊗ k⊥)}n⊥θ

ε
nθ

ε
n−k .

To simplify this expression, we first observe that |k⊥| = |n⊥ − k⊥| implies |n⊥|2 = 2n⊥ · k⊥. Using this

identity, we obtain (k⊥ ⊗ [n⊥ − k⊥]) + ([n⊥ − k⊥] ⊗ k⊥) = n⊥(n⊥ · k⊥) = n⊥|n⊥|2/2 so that

∇⊥ · Sε
2 = ∇⊥

(︂
1
4

∑︂

n∈ℤ3

|n⊥|2ein·x
∑︂

k∈ℤ3

θε
nθ

ε
n−k

)︂
=: −∇⊥π

ε
3 −−⇀ −∇⊥π3 in 𝒟′(ℝ∗

+ × 𝕋3) .

This ends the proof of Lemma 5. □

4.6. Passage to the limit in the equation for ρεvε
∥

Here, we justify the passage to the limit in equation (22) for ρεvε. Let us start with the initial condition

term. From the discussion about the properties of sequences of initial conditions in Section 2.3 (in particular

the uniform bound (27) and the resulting convergences), we can pass to the limit, in the distributional sense,

in the initial condition term of (22) to obtain the limit initial condition u0 = v0 (since u0 = v0). Next,

using weak convergence of vε yielded by the first statement of Lemma 3, we can pass to the limit, in the

distributional sense, in all linear diffusive terms of (22). Using the same arguments as those used to deal

with (56) and show that ∂t(ρ
εvε

⊥) ⇀ ∂tv⊥ in 𝒟′(ℝ∗
+ × 𝕋3), we obtain ∂t(ρ

εvε) ⇀ ∂tv in 𝒟′(ℝ∗
+ × 𝕋3).

Regarding the terms ελεvε ·∇ε∂ ψ and ε(|Bε|/2)∂ ψ , uniform bounds in L2
loc(ℝ+;L2(𝕋3)) for vε and Bε,

given by the energy estimate, show that the terms ελε∂ ∇ε · vε and ε∂ (|Bε|/2) vanish in 𝒟′(ℝ∗
+ × 𝕋3), as

ε → 0. For the term Bε ⊗Bε : Dεψ , we consider the following decomposition, ∀ψ ∈ C ∞
c (ℝ+ × 𝕋3;ℝ),

∫︂

ℝ+

dt

∫︂

𝕋3

dxBε ⊗Bε : Dεψ =

∫︂

ℝ+

dt

∫︂

𝕋3

dxBεBε
⊥ · ∇⊥ψ + ε

∫︂

ℝ+

dt |Bε|2∂ ψ . (63)

Using the uniform bound in L2
loc(ℝ+;L2(𝕋3)) for Bε, given by the energy estimate, the second term of (63)

vanishes as ε → 0. Using weak convergence of Bε and strong convergence of Bε
⊥, given respectively by the

first and third statements of Lemma 2, we obtain ∇⊥ · (BεBε
⊥) ⇀ ∇⊥ · (B B⊥) in 𝒟′(ℝ∗

+ ×𝕋3), which ends

the treatment of the first term of (63). Therefore, we obtain ∇ε · (Bε ⊗Bε) ⇀ ∇⊥ · (B B⊥) in 𝒟′(ℝ∗
+ ×𝕋3).

For the singular fluid pressure term pε/ε, we rewrite this term as pε/ε = ε(γ − 1)Π2(ρε) + bεϱε + a(ρε)γ/ε.

The constant term a(ρε)γ/ε is irrelevant because it disappears by spatial integration in (22). From energy

inequality (30)-(33) with the pressure term Π2, we obtain ε(γ − 1)Π2(ρε) → 0 in L∞
loc(ℝ+;L1(𝕋3))−strong.

From the second statement of Lemma 1, we obtain bεϱε ⇀ bϱ in L∞
loc(ℝ+;Lκ(𝕋3))−weak–∗. Therefore, we

obtain ∂ (pε/ε) ⇀ b∂ ϱ = −∂ B in 𝒟′(ℝ∗
+ × 𝕋3), where for the last equality we have used the point

3 of Lemma 4. It remains to deal with the term ρεvε ⊗ vε : Dεψ , for which we consider the following

decomposition, ∀ψ ∈ C ∞
c (ℝ+ × 𝕋3;ℝ),

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρεvε ⊗ vε : Dεψ =

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρεvεvε
⊥ · ∇⊥ψ + ε

∫︂

ℝ+

dt

∫︂

𝕋3

dx ρε|vε|2∂ ψ . (64)

Since from the energy estimate, ∥ρε|vε|2∥L∞
loc(ℝ+;L1(𝕋3)) is bounded uniformly with respect to ε, the second

term of (64) vanishes as ε → 0. Finally, it remains to deal with the first term of (64). This term is the most
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delicate, because we have only weak compactness for ρεvε and vε
⊥. Indeed, even if ℙ⊥vε

⊥ converge strongly,

ℚ⊥vε
⊥ converge weakly (to zero, see Lemma 3). Therefore, to pass to the limit in this term, we will use

Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three points, are satisfied.

1) From the fifth statement of Lemma 3, we obtain ρεvε ⇀ v in L2
loc(ℝ+;L6γ/(6+γ)(𝕋3))−weak. 2) The

uniform bound vε
⊥ ∈ L2

loc(ℝ+;L6(𝕋3)) and Lemma 4.3 in [7] imply ∥vε
⊥(t, ·+h)−vε

⊥(t, ·)∥L2
loc(ℝ+;L6(𝕋3)) → 0,

as |h| → 0, uniformly with respect to ε. 3) From equation (22) for ρεvε, we obtain in 𝒟′(ℝ∗
+ × 𝕋3),

∂t(ρ
εvε) = −∇ε · (ρεvε ⊗vε)+∂

(︁
1
εp

ε + ε
2 |Bε|2

)︁
+∇ε · (Bε ⊗Bε)+µε

⊥∆⊥v
ε +µε∆ vε +ελε∂ ∇ε ·vε . (65)

Using the energy estimate and the preceding bound for the pressure term pε/ε (already used in this sec-

tion), we obtain ∂t(ρ
εvε) ∈ L∞

loc(ℝ+; (W−1,1 + W−1,κ)(𝕋3)) + L2
loc(ℝ+;H−1(𝕋3)) ↪→ L1

loc(ℝ+;W−1,1(𝕋3)).

Gathering points 1) to 3), we can apply Lemma 14 of Appendix A with gε = ρεvε, hε = vε
⊥, p1 = q1 = 2

(1/p1 + 1/q1 = 1), p2 = 6γ/(6 + γ), and q2 = 6 (1/p2 + 1/q2 = 1/γ + 1/3 < 1, for γ > 3/2), to obtain

∇⊥ · (ρεvεvε
⊥) ⇀ ∇⊥ · (v v⊥) in 𝒟′(ℝ∗

+ ×𝕋3). In conclusion, we have shown that the weak formulation (22)

converges to the second equation of (16) in the sense of distributions.

4.7. Passage to the limit in a combination of the equations for ϱε and Bε
∥

The passage to the limit in the equation of Bε is more delicate, because, unlike what is done to treat

the asymptotic limit in the perpendicular direction, here, we can not use the unitary group method to

deal with the singular term in 1/ε in equation (24) for Bε. From the study of the asymptotic limit in the

perpendicular direction, more precisely the point 3 of the Lemma 4, we observe a relation between B and

ϱ, namely, B + bϱ = B + p = 0, where we define p = aγϱ. From this relation, the idea is to cancel the

1/ε-singularity in equation (24) for Bε with the 1/ε-singularity coming from the equation of ϱε, this latter

equation being obtained from equation (20) for ρε. Indeed, from equation (20), we construct the following

equation for ϱε/ϱε = (ρε/ϱε − 1)/ε, ∀φ ∈ C ∞
c (ℝ+ × 𝕋3;ℝ),

∫︂

Ω

dx
ϱε

0

ρε
0

φ(0) +

∞∫︂

0

dt

∫︂

Ω

dx

(︃
ϱε

ρε

(︁
∂t + vε

⊥ · ∇⊥
)︁
φ+

1

ε
vε

⊥ · ∇⊥φ+
ρε

ρε
vε∂ φ

)︃
= 0 . (66)

Let us define the auxiliary component

B
ε :=

1

c

(︃
Bε − ϱε

ρε

)︃
, B

ε
0 :=

1

c

(︃
Bε

0 − ϱε
0

ρε
0

)︃
, c = 1 +

1

b
.

Taking φ = ψ in (66), where ψ is the same test function as the one used in equation (24), and substracting

to (24), we obtain

c

∫︂

Ω

dxBε
0 ψ (0) + c

∞∫︂

0

dt

∫︂

Ω

dx
(︁
B

ε (∂t + vε
⊥ · ∇⊥)ψ

− vε Bε
⊥ · ∇⊥ψ − ρε

ρε
vε ∂ ψ + η⊥B

ε ∆⊥ψ + η Bε ∆ ψ
)︁

= 0 . (67)

In the sense of distributions, this reveals slow dynamics on Bε. Since B + bϱ = 0, the weak limit of Bε is

B = (B − ϱ)/c = B . This means that, after a boundary layer near t = 0, the asymptotic behavior of Bε

is similar to the one of B . And, because B + bϱ = 0, the time evolution of B provides information on the

first-order pressure p = bϱ or on the first-order density ϱ. Now, to exhibit the equation satisfied by B , we
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pass to the limit in (67). Let us start with the initial condition term. From the assumptions and the discussion

about the properties of sequences of initial conditions in Section 2.3, we have ϱε
0 ⇀ ϱ0 in Lκ(𝕋3)−weak

with κ = min{2, γ}, ρε → 1 and Bε
0 ⇀ B0 in L2(𝕋3)−weak. It follows that Bε

0 ⇀ B0 := (B0 − ϱ0)/c in

𝒟′(𝕋3). Observe that B0 = B0 if and only if B0 +bϱ0 = 0. In view of (6), the two conditions ∇⊥ ·v0⊥ = 0

and B0 + bϱ0 = 0 are related to a preparation of the initial data to avoid fast time oscillations. Still, in our

framework, we can incorporate general data satisfying B0 ̸≡ B0 (and also ∇⊥ · v0⊥ ̸≡ 0, see Section 4.5).

It is obvious that ∂tB
ε ⇀ ∂tB = ∂tB in 𝒟′(ℝ∗

+ × 𝕋3). We next deal with the linear terms of (67).

Using weak convergence of Bε, yielded by the first statement of Lemma 2, we can pass to the limit,

in the distributional sense, in all linear diffusive terms of (67). Using the fifth statement of Lemma 3,

we obtain ∂ (ρεvε) ⇀ ∂ v in 𝒟′(ℝ∗
+ × 𝕋3). Using weak convergence of vε and the strong convergence

of Bε
⊥, given by respectively the first statement of Lemma 3 and the third statement of Lemma 2, we

obtain ∇⊥ · (vεBε
⊥) ⇀ ∇⊥ · (v B⊥) in 𝒟′(ℝ∗

+ × 𝕋3). Finally it remains to pass in the limit in the term

∇⊥ · (Bεvε
⊥). On the one hand, we have weak compactness for Bε, and on the other hand, we have only

weak compactness for vε
⊥, because, despite the strong compactness of solenoidal part ℙ⊥vε

⊥, the irrotational

part ℚ⊥vε
⊥ converges only weakly (see Lemma 3). Therefore, to pass to the limit in this term, we will use

Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three points, are satisfied.

1) We first recall that cBε = Bε − (ϱε/ρε). Using the second statement of Lemma 1 together with the first

statement of Lemma 2, for κ = min{2, γ}, we obtain thatBε ∈ L∞
loc(ℝ+; (Lκ+L2)(𝕋3)) ↪→ L∞

loc(ℝ+;Lκ(𝕋3)).

Therefore, by weak compactness, we obtain cBε ⇀ cB = B − ϱ in L∞
loc(ℝ+;Lκ(𝕋3))−weak–∗. 2) The

uniform bound vε
⊥ ∈ L2

loc(ℝ+;L6(𝕋3)) and Lemma 4.3 in [7] imply ∥vε
⊥(t, · + h) − vε

⊥(t, ·)∥L2
loc(ℝ+;L6(𝕋3)) →

0, as |h| → 0, uniformly with respect to ε. 3) Using the uniform L∞
loc(ℝ+;Lκ(𝕋3))−bound for Bε, the

uniform L2
loc(ℝ+;L6(𝕋3))−bound for vε, the uniform L2

loc(ℝ+;L6∩H1(𝕋3))−bound for Bε
⊥, and the uniform

L2
loc(ℝ+;Lq(𝕋3))−bound for ρεvε, with q = 6γ/(6 +γ), we obtain from equation (67) and Hölder inequality

∂tB
ε ∈ L2

loc(ℝ+;W−1,6κ/(6+κ)(𝕋3)) +L1
loc(ℝ+;W−1,3(𝕋3))

+L2
loc(ℝ+; (W−1,q +H−1)(𝕋3)) ↪→ L1

loc(ℝ+;W−1,1(𝕋3)) ,

where the last continuous injection comes from Sobolev embeddings. Gathering points 1) to 3), we can apply

Lemma 14 of Appendix A with gε = B
ε, hε = vε

⊥, p1 = ∞, q1 = 2 (1/p1 + 1/q1 < 1), p2 = κ, and q2 = 6

(1/p2 + 1/q2 ≤ 2/3 + 1/6 < 1, for γ , κ > 3/2), to obtain ∇⊥ · (Bεvε
⊥) ⇀ ∇⊥ · (B v⊥) in 𝒟′(ℝ∗

+ × 𝕋3). In

conclusion, the weak formulation (67) converges to

c

∫︂

Ω

dxB0 ψ (0) + c

∞∫︂

0

dt

∫︂

Ω

dx
(︁
B (∂t + v⊥ · ∇⊥)ψ

− v B⊥ · ∇⊥ψ − v ∂ ψ + η⊥B ∆⊥ψ + η B ∆ ψ
)︁

= 0 .

Knowing (by passing to the weak limit) that ∇⊥ · B⊥ = 0, we recover the first equation of (16) with the

initial data prescribed in (17).

5. Asymptotic analysis in the whole space

This section is devoted to the proof of Theorem 2. As in the periodic case, we first obtain some weak and

strong compactness properties for the same sequences. Since in the whole case the density is only locally

integrable in space, some of these compactness results need different proofs.

5.1. Compactness of ρε and ϱε

Here, we aim at proving the following lemma.
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Lemma 6. There exists a generic constant C > 0, which may depend on C0, a, and γ such that the sequences

ρε and ϱε := (ρε − 1)/ε satisfy the following properties.

∥ρε∥L∞
loc(ℝ+;Lγ

loc(ℝ3)) ≤ C , and (ρε − 1) ∈ L∞
loc(ℝ+;Lγ

2 ∩H−α(ℝ3)) , ∀ γ > 1 , α ≥ 1/2 ,

∥ρε − 1∥L∞
loc(ℝ+;Lγ(ℝ3)) ≤ Cε2/γ , and ∥ρε − 1∥L∞

loc(ℝ+;L2(ℝ3)) ≤ Cε , ∀ γ ≥ 2 ,

∥ρε − 1∥L∞
loc(ℝ+;Lγ

loc(ℝ3)) ≤ Cε , for all 1 < γ < 2 ,

ρε −−→ 1 in L∞
loc(ℝ+;Lγ

2 ∩ Lγ
loc(ℝ3))−strong , ∀ γ > 1 ,

∥ϱε∥L∞
loc(ℝ+;Lκ

2 ∩Lκ
loc∩H−α(ℝ3)) ≤ C , κ = min{2, γ} , α ≥ 1/2

ϱε −−⇀ ϱ in L∞
loc(ℝ+;Lκ

loc ∩H−α(ℝ3))−weak–∗ , κ = min{2, γ} , α ≥ 1/2 .

Proof. We start with the first bound of the first assertion of Lemma 6. We first claim that ρε ∈
L∞

loc(ℝ+;Lγ
loc(ℝ3)) if ρε ∈ L∞

loc(ℝ+;L1
loc(ℝ3)). Indeed, using the convexity of the power function ℝ+ ∋

x ↦→ xγ (with γ > 1), and energy inequality (30)-(32) with the pressure term Π3, there exists a con-

stant c0, such that for any compact set K ⊂ ℝ3, 0 ≤
∫︁

K
dx {(ρε)γ − γρε + γ − 1} ≤ c0. Then,∫︁

K
dx (ρε)γ ≤ c0 + (γ − 1)|K| + γ

∫︁
K
dx ρε < ∞, if ρε ∈ L∞

loc(ℝ+;L1
loc(ℝ3)). It remains to prove this

last property. For this, we consider a test function φ ∈ C ∞
c (ℝ3), such that φ ≥ 0, and φ ≡ 1 on a subset K

of its support S. From the mass conservation law and the energy estimate, we obtain

d

dt

∫︂

S

dx ρεφ =

∫︂

S

dx ρεvε · ∇φ ≤ ∥2∇√
φ∥L∞(ℝ3)

(︃∫︂

ℝ3

dx ρε|vε|2
)︃(︃∫︂

S

dx ρεφ

)︃
≤ 𝔠0

(︃∫︂

S

dx ρεφ

)︃
,

where the constant 𝔠0 depends on C0 and φ. This inequality leads to
∫︁

K
dx |ρε| ≤

∫︁
S
dx ρεφ ≤

exp(𝔠0t)
∫︁

S
dx ρε

0φ, which shows that ρε ∈ L∞
loc(ℝ+;L1

loc(ℝ3)). It can also be shown from the second and

third statements of Lemma 6. Now, from the uniform bound (36) and energy inequality (30)-(32) with the

pressure term Π3 defined by (38), we obtain Π3(ρε) ∈ L∞
loc(ℝ+;L1(ℝ3)) uniformly with respect to ε. From

this bound and Lemma 12 (with f = ρε and f̄ = 1), we obtain, for any T ∈ (0,+∞),

sup
t∈[0,T ]

∫︂

ℝ3

dx {|ρε − 1|21{|ρε−1|≤δ} + |ρε − 1|γ1{|ρε−1|>δ}} = sup
t∈[0,T ]

∫︂

ℝ3

dxℨγ,1
2,δ (ρε)

≤ sup
t∈[0,T ]

1

κ1

∫︂

ℝ3

dxΠ1,γ(ρε) = sup
t∈[0,T ]

(γ − 1)ε2

κ1a

∫︂

ℝ3

dxΠ3(ρε) ≤ C0(γ − 1)ε2

κ1a
. (68)

This inequality implies the bound in L∞
loc(ℝ+;Lγ

2(ℝ3)) in the second part of the first statement of Lemma 6,

and also the strong convergence of ρε to 1 in L∞
loc(ℝ+, L

γ
2(ℝ3)) in the fourth statement of Lemma 6. To

complete the proof of the second part of the first statement of Lemma 6, we have to show that Lγ
2(ℝ3) ↪→

H−α(ℝ3), with α ≥ 1/2. This embedding is obvious for γ = 2. For γ ̸= 2, from the definition of the space

Lγ
2(ℝ3), the density ρε(t) − 1 can be splitted into parts d1(t)ε := (ρε(t) − 1)1{|ρε(t)−1|≤δ} ∈ L2(ℝ3) and

dε
2(t) := (ρε(t) − 1)1{|ρε(t)−1|>δ} ∈ Lγ(ℝ3). The part dε

1(t) is obviously in H−α(ℝ3) with α ≥ 1/2. For the

part dε
2(t) we proceed as follows. By Sobolev embeddings, we have Hα(ℝ3) ↪→ Lγ′

(ℝ3) with 1/γ+ 1/γ′ = 1,

and α > 1/2 since γ > 3/2. By duality we then obtain dε
2(t) ∈ Lγ(ℝ3) ↪→ H−α(ℝ3). Therefore (ρε(t) − 1) ∈

H−α(ℝ3), with α ≥ 1/2. We continue with the second assertion of Lemma 6. Estimate (68) and the

inequality |ρε − 1|2 ≥ |ρε − 1|γ , for γ ≥ 2 and |ρε − 1| ≤ δ < 1, imply the first part of the second statement

of Lemma 6. The second part of this second statement appeals to Lemma 11. Indeed, from this lemma, for

γ ≥ 2, we obtain |ρε −1|2 ≤ ε2(γ−1)/(ν1a)Π3(ρε), which gives ∥ρε −1∥L∞
loc(ℝ+;L2(ℝ3)) ≤ ε

√︁
C0(γ − 1)/(ν1a).

We continue with the third assertion of Lemma 6. Using Cauchy–Schwarz inequality and estimate (68), we

obtain, for any compact set K ⊂ ℝ3, and any T ∈ (0,+∞),
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sup
t∈[0,T ]

∥ρε(t) − 1∥γ
Lγ(K) ≤ |K|1−γ/2 sup

t∈[0,T ]

(︃∫︂

K

dx |ρε − 1|21{|ρε−1|≤δ}

)︃γ/2

+ sup
t∈[0,T ]

∫︂

K

dx |ρε − 1|γ1{|ρε−1|>δ}

≤ C(|K|, C0, a, γ)(εγ + ε2) ,

which justifies the third assertion of Lemma 6. Then, the strong convergence of ρε to 1 in L∞
loc(ℝ+, L

γ
loc(ℝ3))

in the fourth statement of Lemma 6, is obtained from the first part of the second statement of Lemma 6,

and the third statement of Lemma 6. We continue with the fifth statement of Lemma 6. The uniform bound

in L∞
loc(ℝ+;Lκ

loc(ℝ3)) for ϱε comes from the second part of the second statement of Lemma 6, and the third

statement of Lemma 6. For the uniform bound of ϱε in L∞
loc(ℝ+;Lκ

2 (ℝ3)), we distinguish two cases according

to the value of γ. For γ ≥ 2, since κ = 2, the second part of the second statement of Lemma 6 implies the

fifth one. For 1 < γ < 2, estimate (68) leads to

sup
t∈[0,T ]

∫︂

ℝ3

dx
{︂⃓⃓
⃓ρ

ε − 1

ε

⃓⃓
⃓
2

1{| ρε−1
ε |≤ δ

ε } + εγ−2
⃓⃓
⃓ρ

ε − 1

ε

⃓⃓
⃓
γ

1{| ρε−1
ε |> δ

ε }

}︂
≤ C0(γ − 1)

κ1a
,

for any T ∈ (0,+∞). This last estimate and inequality εγ−2 > 1, imply the bound of ϱε in L∞
loc(ℝ+;Lκ

2 (ℝ3)).

To complete the fifth assertion of Lemma 6, we observe, as above, that we have the embedding Lκ
2 (ℝ3) ↪→

H−α(ℝ3), with α ≥ 1/2 and κ = min{2, γ}. Finally, the sixth statement of Lemma 6 is obtained from the

fifth assertion and weak compactness properties. This ends the proof of Lemma 6. □

5.2. Compactness of Bε

Here, we aim at proving the following lemma.

Lemma 7. The sequence Bε satisfies the following properties.

Bε −−⇀ B in L2
loc(ℝ+;L6 ∩H1(ℝ3))−weak ∩ L∞

loc(ℝ+;L2(ℝ3))−weak–∗ ,
∇ε ·Bε −−⇀ ∇⊥ ·B⊥ = 0 in L2

loc(ℝ+;L2(ℝ3))−weak ,

Bε
⊥ −−→ B⊥ in Lr

loc(ℝ+;L2
loc(ℝ3))−strong , 1 ≤ r < ∞ .

Proof. The proof of Lemma 7 is similar to the proof of Lemma 2. □

5.3. Compactness of vε and ρεvε

Here, we aim at proving the following Lemma.

Lemma 8. Assume γ > 3/2. Let 𝔰 := max{1/2, 3/γ − 1} ∈ [1/2, 1). The sequences vε and ρεvε satisfy the

following properties.

vε −−⇀ v in L2
loc(ℝ+;L6 ∩H1(ℝ3))−weak ,

∇ε · vε −−⇀ ∇⊥ · v⊥ = 0 in L2
loc(ℝ+;L2(ℝ3))−weak ,

ℚ⊥v
ε
⊥ −−⇀ 0 in L2

loc(ℝ+;L6 ∩H1(ℝ3))−weak ,

ℙ⊥v
ε
⊥ −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lp
loc ∩Hs

loc(ℝ3))−strong , 1 ≤ p < 6 , 0 ≤ s < 1 ,
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ρεvε −−⇀ v in L2
loc(ℝ+;Lq

loc ∩H−σ(ℝ3))−weak , ∀σ ≥ 𝔰 , q = 6γ/(6 + γ) ,

ρεvε − vε −−→ 0 in L2
loc(ℝ+;Lq

loc(ℝ3))−strong , q = 6γ/(6 + γ) ,

ℙ⊥(ρεvε
⊥) −−→ ℙ⊥v⊥ = v⊥ in L2

loc(ℝ+;Lq
loc(ℝ3))−strong , q = 6γ/(6 + γ) .

Proof. We start with the first statement of Lemma 8. The proof of the first statement of Lemma 8 is similar

to the one of the first statement of Lemma 3 except for the bound L2
loc(ℝ+;L2(ℝ3)). We consider the

decomposition vε = vε
1 + vε

2, where vε
1 := vε

1{|ρε−1|≤δ}, and vε
2 := vε

1{|ρε−1|>δ}. For vε
1, since |ρε − 1| ≤ δ,

we obtain 1 − δ ≤ |ρε| and thus

∥vε
1∥L∞

loc(ℝ+;L2(ℝ3)) ≤ (1 − δ)−1/2∥ρε|vε|2∥1/2
L∞

loc(ℝ+;L1(ℝ3)) ≤
√︁
C0/(1 − δ) , (69)

where we have used energy inequality (30)-(32) with the pressure term Π3 defined by (38). For vε
2, using

in order, Hölder inequality (1/γ + 1/γ′ = 1), estimate (68), Gagliardo–Nirenberg interpolation inequality

(1/(2γ′) = θ/2 + (1 − θ)(1/2 − 1/3), i.e., θ = 1 − 3/(2γ) ∈ (0, 1), since 3/2 < γ < ∞), and Young inequality

(ab ≤ θa1/θ + (1 − θ)b1/(1−θ)), we obtain

∫︂

ℝ3

dx |vε
2|2 ≤ δ−1

∫︂

ℝ3

dx |vε|2|ρε − 1|1{|ρε−1|>δ}

≤ δ−1∥(ρε − 1)1{|ρε−1|>δ}∥Lγ(ℝ3)∥vε∥2
L2γ′ (ℝ3)

≤ δ−1

(︃
C0(γ − 1)

κ1a

)︃1/γ

ε2/γ∥vε∥2
L2γ′ (ℝ3)

≤ δ−1

(︃
C0(γ − 1)

κ1a

)︃1/γ

ε2/γ∥vε∥2θ
L2(ℝ3)∥∇vε∥2(1−θ)

L2(ℝ3)

≤ δ−1

(︃
C0(γ − 1)

κ1a

)︃1/γ

ε2/γ
(︁
θ∥vε∥2

L2(ℝ3) + (1 − θ)∥∇vε∥2
L2(ℝ3)

)︁
. (70)

From energy inequality (30)-(32) with the pressure term Π3, we obtain ∇vε ∈ L2
loc(ℝ+;L2(ℝ3)), uniformly

with respect to ε. Using this last bound and (69), a local time integration of estimate (70) implies that there

exist two constants K0 and K1 (depending on C0, γ, κ1, a and δ) such that

∥vε∥2
L2

loc(ℝ+;L2(ℝ3)) ≤ K0 +K1ε
2/γ∥vε∥2

L2
loc(ℝ+;L2(ℝ3)) . (71)

For ε small enough, this last inequality implies vε ∈ L2
loc(ℝ+;L2(ℝ3)) and thus vε ∈ L2

loc(ℝ+;L6 ∩H1(ℝ3)).

We note that estimates (70)-(71) also imply ε−ηvε
2 ∈ L2

loc(ℝ+;L2(ℝ3)), uniformly with respect to ε, for

0 ≤ η ≤ 2/3 (since γ > 3/2). We continue with the other statements of Lemma 8. Using Lemma 6 and

energy inequality (30)-(32) with the pressure term Π3 defined by (38), the proof of statements two to seven

of Lemma 8 is similar to the proof of their counterparts of Lemma 3 for periodic domains. □

We continue with an auxiliary lemma, which will be useful to pass to the limit in the term ρεvε
⊥ ⊗ vε

⊥.

Contrary to the periodic case, we are not able to get the strong convergence (50) for Uε. Indeed, we can

still prove locally strong compactness in space-time for 𝒰ε (using an Aubin–Lions theorem and estimates

(75)-(76) below), but returning to Uε, via the group of isometry 𝒮, such local strong compactness seems

unaccessible since 𝒮 is non local. To recover some strong compactness for Uε we consider a truncated version

of Uε and use the uniform integrability in space of such truncated sequences as well as the energy inequality

and the strong convergence of ρε.
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Lemma 9. Assume γ > 3/2. Let us define Uε := t(ϕε, tΦε), where ϕε := bϱε +Bε, and Φε := ℚ⊥(ρεvε
⊥), with

ϱε := (ρε − 1)/ε. We also define 𝒰ε := 𝒮(−t/ε)Uε, where the group of isometry {𝒮(τ) ; τ ∈ ℝ} is the same

as the one defined in Section 4.5 with now Ω = ℝ3, except that we substitute c for cε. Finally, we recall that

κ = min{2, γ}, and we set κ = max{1/2, 3/(2γ)} ∈ [1/2, 1) and 𝔰 := max{1/2, 3/γ − 1} ∈ [1/2, 1). Then,

1. We have the following uniform (with respect to ε) bounds

ϕε ∈ L∞
loc(ℝ+;H−α(ℝ3)) , α ≥ 1

2 , (72)

ρεvε ∈ L∞
loc

(︁
ℝ+;

(︁
L2 + L2γ/(γ+1)

)︁
∩ L

2γ/(γ+1)
loc ∩H−β(ℝ3)

)︁
, β ≥ 3

2γ . (73)

ϱεvε ∈ L2
loc

(︁
ℝ+;

(︁
L3/2 + L6κ/(6+κ)

)︁
∩ L

6κ/(6+κ)
loc ∩H−ϰ(ℝ3)

)︁
, ϰ ≥ 𝔰 . (74)

2. There exists a constant C, independent of ε, such that

∥ 𝒰ε∥L∞
loc(ℝ+;H−σ(ℝ3)) ≤ C , σ ≥ κ , (75)

∥∂t 𝒰ε∥L2
loc(ℝ+;H−r(ℝ3)) ≤ C , r >

(︁
5
2

)︁+
, (76)

3. There exists a function ˜︁𝒰ε := t( ˜︁ψε, t˜︁Ψε) ∈ L∞
loc(ℝ+;L2(ℝ3;ℝ3)), a constant C, independent of ε, and a

function ω : ℝ+ ↦→ ℝ+, continuous in the neighborhood of zero, with ω(ε) → 0, as ε → 0+, such that,

for σ ≥ κ,

∥ ˜︁𝒰ε∥L∞
loc(ℝ+;L2(ℝ3) ≤ C , (77)

∥ 𝒰ε − ˜︁𝒰ε∥L∞
loc(ℝ+;H−σ(ℝ3)) ≲ ω(ε) , (78)

∥Uε − 𝒮(t/ε) ˜︁𝒰ε∥L∞
loc(ℝ+;H−σ(ℝ3)) ≲ ω(ε) , (79)

∥ℚ⊥v
ε
⊥ − 𝒮2(t/ε) ˜︁𝒰ε∥L2

loc(ℝ+;H−σ(ℝ3)) ≲ ω(ε) + ε . (80)

Proof. We start with the point 1 of Lemma 9, beginning with (72). Using the fifth statement of Lemma 6

for an estimate of ϱε, the first statement of Lemma 7 for an estimate of Bε, the embedding (Lκ +L2)(ℝ3) ↪→
H−α, with α ≥ 1/2 and κ > 3/2, and the definition ϕε := bϱε +Bε, we obtain (72). We continue with (73),

by recasting ρεvε as

ρεvε = (
√
ρεvε)

√
ρε1{|ρε−1|≤δ} + (

√
ρεvε)

√
ρε

√︁
|ρε − 1|

√︁
|ρε − 1|1{|ρε−1|>δ}. (81)

The first term of the right-hand side of (81) is the product of the function
√
ρεvε ∈ L∞

loc(ℝ+;L2(ℝ3))

and the function ρε
1{|ρε−1|≤δ} ∈ L∞

loc(ℝ+;L∞(ℝ3)), thus using Hölder inequality this product is in

L∞
loc(ℝ+;L2(ℝ3)). The second term of the right-hand side of (81) is the triple product of the func-

tion
√
ρεvε ∈ L∞

loc(ℝ+;L2(ℝ3)), the function
√
ρε/
√︁

|ρε − 1|1{|ρε−1|>δ} ∈ L∞
loc(ℝ+;L∞(ℝ3)), and the

function
√︁

|ρε − 1|1{|ρε−1|>δ} ∈ L∞
loc(ℝ+;L2γ(ℝ3)), thus, using Hölder inequality, this triple product is

in L∞
loc(ℝ+;L2γ/(γ+1)(ℝ3)). Using the Sobolev embeddings Ḣβ(ℝ3) ↪→ {L2γ/(γ−1)(ℝ3) , L2(ℝ3)} (with

γ > 3/2), for β ≥ 3/(2γ), by duality we obtain {L2(ℝ3) , L2γ/(γ+1)(ℝ3)} ↪→ H−β(ℝ3); hence (73).

We continue with the proof of (74). We first consider the decomposition ϱεvε = ϱεvε
1 + ϱεvε

2, with vε
1

and vε
2 defined as in the proof of Lemma 8. From ϱε

1{|ρε−1|≤δ} ∈ L∞
loc(ℝ+;L2(ℝ3)) (fifth statement of

Lemma 6) and vε ∈ L2
loc(ℝ+;L6(ℝ3)), using Hölder inequality, we obtain ϱεvε

1 ∈ L2
loc(ℝ+;L3/2(ℝ3)). From

ϱε
1{|ρε−1|>δ} ∈ L∞

loc(ℝ+;Lκ(ℝ3)) (fifth statement of Lemma 6) and vε ∈ L2
loc(ℝ+;L6(ℝ3)), using Hölder

inequality, we obtain ϱεvε
2 ∈ L2

loc(ℝ+;L𝔮(ℝ3)), with 𝔮 = 6κ/(6 + κ). Moreover, using the first statement
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of Lemma 6 and Hölder inequality, we obtain ϱεvε ∈ L2
loc(ℝ+;L𝔮

loc(ℝ3)). It remains to show the H−ϰ-

bound in (74). Since ϱεvε
1 ∈ L2

loc(ℝ+;L3/2(ℝ3)), using the Sobolev embedding L3/2(ℝ3) ↪→ H−α(ℝ3), with

α ≥ 1/2, we obtain ϱεvε
1 ∈ L2

loc(ℝ+;H−α(ℝ3)). Since ϱεvε
2 ∈ L2

loc(ℝ+;L𝔮(ℝ3)), using the Sobolev embed-

ding L𝔮(ℝ3) ↪→ H−𝔰̃ with 𝔰̃ ≥ (3/κ) − 1 while (3/κ) − 1 ≤ 𝔰, we get ϱεvε
2 ∈ L2

loc(ℝ+;H−𝔰̃(ℝ3)). Combining

this two last results, we obtain ϱεvε ∈ L2
loc(ℝ+;H−ϰ(ℝ3)), with ϰ ≥ 𝔰; hence (74).

We continue with the point 2 of Lemma 9, starting with (75). Using (72)-(73) and since the group 𝒮
(resp. the operator ℚ⊥) is an isometry (resp. continuous) in Hα(ℝ3) with α ∈ ℝ, we obtain (75). For (76),

observe that ∂t 𝒰ε = 𝒮(−t/ε)F ε, with F ε defined by

F ε :=

(︄
F ε

1

F ε
2

)︄
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F ε
1 = − b∂ (ρεvε) + ∇⊥ · ℚ⊥(ϱεvε

⊥) −Bε∇ε · vε

− (vε · ∇ε)Bε + (Bε · ∇ε)vε + (ηε
⊥∆⊥ + ηε∆ )Bε ,

F ε
2 = − ℚ⊥∇ε · (ρεvε

⊥ ⊗ vε) − (γ − 1)∇⊥Π3(ρε) − 1
2∇⊥(|Bε|2) + ∂ ℚ⊥B

ε
⊥

+ ℚ⊥∇ε · (Bε
⊥ ⊗Bε) + µε

⊥∇⊥(∇⊥ · vε
⊥) + µε∆ ℚ⊥v

ε
⊥ + λε∇⊥(∇ε · vε) .

(82)

Using estimates of point 1 in Lemma 9 and following Step 1 in the proof Lemma 4, we obtain from (82)

and κ > 𝔰 (γ > 3/2), F ε
1 ∈ L2

loc(ℝ+; (H−κ−1 + W−1,3/2 + H−1)(ℝ3)) ↪→ L2
loc(ℝ+;H−κ−1(ℝ3)), and

F ε
2 ∈ L2

loc(ℝ+; (W−1−δ,1 +W−1,1 +H−1 +L2)(ℝ3)) ↪→ L2
loc(ℝ+;H−r(ℝ3)), with r > 5/2 + δ, for any δ > 0.

Therefore, using the isometry 𝒮 in Hα(ℝ3) for any α ∈ ℝ, we obtain (76).

We continue with the point 3 of Lemma 9, starting with (77). For any δ > 0, we define ˜︁ψε :=

𝒮1(−t/ε)[ϕε
1{ρε≤1+δ}] and ˜︁Ψε := 𝒮2(−t/ε)ℚ⊥(ρεvε

⊥1{ρε≤1+δ}). Clearly, from the uniform bounds above

and the isometry 𝒮 in Hα(ℝ3) for any α ∈ ℝ, we obtain ˜︁ψε, ˜︁Ψε ∈ L∞
loc(ℝ+;L2(ℝ3)). We continue with

the proof of (78). Since ϱε ∈ L∞
loc(ℝ+;Lκ

2 (ℝ3)) and Bε ∈ L∞
loc(ℝ+;L2(ℝ3)), using the De la Vallée Poussin

criterion, we obtain that ϕε is spatially uniformly integrable in L3/2(ℝ3), uniformly in time on any compact

time interval. Then, from the fourth statement of Lemma 6, we obtain ∥ϕε
1{ρε>1+δ}∥L∞

loc(ℝ+;L3/2(ℝ3)) → 0, as

ε → 0. Therefore, using the isometry 𝒮, we obtain the first part of (78), that is ∥ψε− ˜︁ψε∥L∞
loc(ℝ+;H−σ(ℝ3)) → 0,

as ε → 0. Since ρεvε
⊥1{ρε>1+δ} =

√
ρεvε

⊥
√
ρε1{ρε>1+δ}, using ρε → 1 in L∞

loc(ℝ+;Lγ
2(ℝ3))−strong (fourth

statement of Lemma 6), the uniform bound ∥ρε|vε|2∥L∞
loc(ℝ+;L1(ℝ3)) ≤ C < ∞, and Hölder inequality, we

obtain ρεvε
⊥1{ρε>1+δ} → 0 in L∞

loc(ℝ+;L2γ/(γ+1)(ℝ3)), as ε → 0. Since the group 𝒮 (resp. the operator ℚ⊥)

is an isometry (resp. continuous) in Hα(ℝ3) for any α ∈ ℝ, using the embedding L2γ/(γ+1)(ℝ3) ↪→ H−σ(ℝ3)

(see above in the proof), we obtain the second part of (78), that is ∥Ψε − ˜︁Ψε∥L∞
loc(ℝ+;H−σ(ℝ3)) → 0, as ε → 0.

Still using the isometry 𝒮, we deduce estimate (79) from (78). It remains to prove (80). Using the continuity

of ℚ⊥ and (79), we obtain ∥ℚ⊥vε
⊥ − 𝒮2(t/ε) ˜︁𝒰ε∥L2

loc(ℝ+;H−σ(ℝ3)) ≤ ∥(ρε − 1)vε
⊥∥L2

loc(ℝ+;H−σ(ℝ3)) + ω(ε).

We split (ρε − 1)vε
⊥ into the part dε

1 := (ρε − 1)vε
⊥1{|ρε−1|≤δ} and the part dε

2 := (ρε − 1)vε
⊥1{|ρε−1|>δ}.

Since L3/2(ℝ3) ↪→ H−1/2(ℝ3), using Hölder inequality and estimate (68), we obtain ∥dε
1∥L2

loc(ℝ+;H−σ(ℝ3)) ≤
∥dε

1∥L2
loc(ℝ+;H−1/2(ℝ3)) ≤ ∥(ρε − 1)1{|ρε−1|≤δ}∥L∞

loc(ℝ+;L2(ℝ3))∥vε
⊥∥L2

loc(ℝ+;L6(ℝ3)) ≲ ε. For the part dε
2, we dis-

tinguish two cases according to the value of γ. For γ ≥ 2, following the same proof as for dε
1, we obtain

∥dε
2∥L2

loc(ℝ+;H−σ(ℝ3)) ≲ ε. For 3/2 < γ < 2, we have κ = 3/(2γ) > 𝔰 = 3/γ − 1 (since γ > 3/2). Then, using

the Sobolev embeddings L6γ/(6+γ)(ℝ3) ↪→ H−𝔰(ℝ3), and estimate (68), we obtain ∥dε
2∥L2

loc(ℝ+;H−σ(ℝ3)) ≤
∥dε

2∥L2
loc(ℝ+;H−κ(ℝ3)) ≤ ∥dε

2∥L2
loc(ℝ+;H−𝔰(ℝ3)) ≤ ∥(ρε − 1)1{|ρε−1|>δ}∥L∞

loc(ℝ+;Lγ(ℝ3))∥vε
⊥∥L2

loc(ℝ+;L6(ℝ3)) ≲

ε2/γ ≤ ε. This ends the proof of Lemma 9. □

5.4. Passage to the limit in the compressible MHD equations

Here, we justify the passage to the limit in the weak formulation (18)-(25) of the MHD equations for

the whole space. Using Lemmas 7 and 8, the passage to the limit in equation (23) for Bε
⊥ follows the same

proof as the one of the periodic case described in Section 4.4. Using Lemmas 6, 7 and 8, and following the

sames lines as the ones of Section 4.5 for the periodic case, we can pass to the limit in almost all terms of
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equation (21) for ρεvε
⊥. Indeed, the only difference with the proof of Section 4.5 is the justification of the

limit ε → 0 for the term ρεvε
⊥ ⊗ vε

⊥ that we detail below in Lemma 10. In particular, the pressure term

𝔭ε = pε/ε2+Bε/ε+|Bε|2/2, rewritten as 𝔭ε = ϕε/ε+a/ε2+πε
2, with πε

2 = (γ−1)Π3(ρε)+|Bε|2/2, converges

weakly to π1 +π2 in 𝒟′(ℝ∗
+ ×ℝ3). More precisely, ϕε/ε ⇀ δ0(t)⊗π0 +π1 in H−1(ℝ+, H

−r(ℝ3))−weak, with

r > (5/2)+, and πε
2 ⇀ π2 in L∞

loc(ℝ+;L1(ℝ3))−weak–∗, while the constant term ba/ε2 disappears by spatial

integration in (21). As in the periodic case, the term δ0(t) ⊗ π0 cancels the irrotational part ℚ⊥u0⊥ of the

limit term u0⊥, so that the limit initial condition is ℙ⊥u0⊥ = ℙ⊥v0⊥. We also obtain ϕε ⇀ ϕ = bϱ+B = 0

in H−1(ℝ+, H
−r(ℝ3))−weak, and the relation bϱ+B = 0 holds for a.e. (t, x) ∈]0,+∞[×ℝ3, since bϱ+B ∈

L∞
loc(ℝ+; (Lκ

loc + L2)(ℝ3)). Using Lemmas 6, 7 and 8, the passage to limit in equations (22) and (67), for

respectively ρεvε and Bε, is justified in a similar way as the one described in Sections 4.6 and 4.7 for the

periodic case. Finally, to conclude the proof in the case of the whole space, we use the following lemma,

which is the counterpart of Lemma 5 with a different proof since we do not have the strong convergence

(50).

Lemma 10. There exists a distribution π3 ∈ 𝒟′(ℝ∗
+ × ℝ3), such that

∇⊥ · (ρεvε
⊥ ⊗ vε

⊥) −−⇀ ∇⊥ · (v⊥ ⊗ v⊥) + ∇⊥π3 in 𝒟′(ℝ∗
+ × ℝ3) .

Proof. First, we observe the following decomposition

∇⊥ · (ρεvε
⊥ ⊗ vε

⊥) = ∇⊥ · (ρεvε
⊥ ⊗ ℙ⊥v

ε
⊥) + ∇⊥ · (ℙ⊥(ρεvε

⊥) ⊗ ℚ⊥v
ε
⊥) + ∇⊥ · (ℚ⊥(ρεvε

⊥) ⊗ ℚ⊥v
ε
⊥) . (83)

Using the fourth and fifth statements of Lemma 8, for the first term of the right-hand side of (83), we obtain

∇⊥ · (ρεvε
⊥ ⊗ vε

⊥) ⇀ ∇⊥ · (v⊥ ⊗ v⊥) in 𝒟′(ℝ∗
+ × ℝ3). Using the third and seventh statements of Lemma 8,

for the second term of the right-hand side of (83), we obtain ∇⊥ · (ℙ⊥(ρεvε
⊥) ⊗ℚ⊥vε

⊥) ⇀ 0 in 𝒟′(ℝ∗
+ ×ℝ3).

It remains to show that we have ∇⊥ · (ℚ⊥(ρεvε
⊥) ⊗ ℚ⊥vε

⊥) ⇀ ∇⊥π3 in 𝒟′(ℝ∗
+ × ℝ3), or equivalently, that,

for any ψ⊥ ∈ C ∞
c (ℝ+ × ℝ3) such that ∇⊥ · ψ⊥ = 0, we have

lim
ε→0

Γε := lim
ε→0

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(ℚ⊥(ρεvε
⊥))[D⊥ψ⊥]ℚ⊥v

ε
⊥ = 0 . (84)

Since ℚ⊥vε
⊥ is bounded in L2

loc(ℝ+;H1(ℝ3)) uniformly with respect to ε, Using (79) with σ ∈ [κ, 1], we

obtain

|Γε − Γε
1| ≲ ω(ε) , with Γε

1 :=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε) ˜︁𝒰ε)[D⊥ψ⊥]ℚ⊥v
ε
⊥ . (85)

Using the isometry 𝒮 in Hα(ℝ3) for any α ∈ ℝ, estimate (95), bound (77), and the fact that the group 𝒮
and the mollification operator 𝒥3,δ commute, we obtain, for any µ ∈ [0, 1] and δ ∈ (0, 1),

∥𝒮2(t/ε)𝒥 2
3,δ
˜︁𝒰ε − 𝒮2(t/ε) ˜︁𝒰ε∥L∞

loc(ℝ+;H−µ(ℝ3)) ≤ ∥𝒥3,δ𝒮2(t/ε) ˜︁𝒰ε − 𝒮2(t/ε) ˜︁𝒰ε∥L∞
loc(ℝ+;H−µ(ℝ3))

+ ∥𝒥3,δ𝒮2(t/ε)𝒥3,δ
˜︁𝒰ε − 𝒮2(t/ε)𝒥3,δ

˜︁𝒰ε∥L∞
loc(ℝ+;H−µ(ℝ3))

≲ δµ(1 + ∥χδ∥L1(ℝ3))∥ ˜︁𝒰ε∥L∞
loc(ℝ+;L2(ℝ3)) ≲ δ

µ . (86)

Since ℚ⊥vε
⊥ is bounded in L2

loc(ℝ+;H1(ℝ3)) uniformly with respect to ε, using (86), we obtain, for any

µ ∈ (0, 1],

|Γε
1 − Γε

2| ≲ δµ , with Γε
2 :=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥 2
3,δ
˜︁𝒰ε)[D⊥ψ⊥]ℚ⊥v

ε
⊥ . (87)
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Since for any δ > 0, and any ν ≥ 0, 𝒮2(t/ε)𝒥 2
3,δ
˜︁𝒰ε ∈ L∞

loc(ℝ+;Hν(ℝ3)), there exists a constant Cδ such

that ∥𝒮2(t/ε)𝒥 2
3,δ
˜︁𝒰ε∥L∞

loc(ℝ+;Hσ(ℝ3)) ≤ Cδ, where Cδ explodes as δ → 0. Then, using (80), we obtain

|Γε
2 − Γε

3| ≲ Cδ(ω(ε) + ε) , with Γε
3 :=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥 2
3,δ
˜︁𝒰ε)[D⊥ψ⊥]𝒮2(t/ε) ˜︁𝒰ε . (88)

We now claim that

|Γε
3 − Γε

4| ≲ δ , with Γε
4 :=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥3,δ
˜︁𝒰ε)[D⊥ψ⊥]𝒮2(t/ε)𝒥3,δ

˜︁𝒰ε . (89)

Indeed, using in order [𝒮 , 𝒥3,δ] = 0 (where [ · , · ] is the commutator), L1 ∗ L2 ⊂ L2, Cauchy–Scwharz

inequality, ∥xχ(x)∥L1(ℝ3) ≤ C < ∞, estimate (95) (with σ = s = 0), the isometry 𝒮 in Hα(ℝ3) for any

α ∈ ℝ, and bound (77), we obtain

Γε
3 − Γε

4 =

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥3,δ
˜︁𝒰ε)[𝒥3,δ , D⊥ψ⊥]𝒮2(t/ε) ˜︁𝒰ε

=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥3,δ
˜︁𝒰ε)(x)

∫︂

ℝ3

dy
(︁
D⊥ψ⊥(y) −D⊥ψ⊥(x)

)︁
χδ(x− y)𝒮2(t/ε) ˜︁𝒰ε(y)

≤ δ∥D2
⊥ψ⊥∥L∞(ℝ+×ℝ3)∥𝒮2(t/ε)𝒥3,δ

˜︁𝒰ε∥L∞
loc(ℝ+;L2(ℝ3))∥|x

δ
χδ| ∗ (𝒮2(t/ε) ˜︁𝒰ε)∥L∞

loc(ℝ+;L2(ℝ3))

≲ δ∥𝒮2(t/ε) ˜︁𝒰ε∥2
L∞

loc(ℝ+;L2(ℝ3)) ≲ δ∥ ˜︁𝒰ε∥2
L∞

loc(ℝ+;L2(ℝ3)) ≲ δ .

We now claim that there exists a constant ˜︁Cδ, which explodes as δ → 0, such that for all ν ≥ 0,

Γε := ∥𝒥3,δ
˜︁𝒰ε(t1) − 𝒥3,δ

˜︁𝒰ε(t2)∥Hν(ℝ3) ≤ ˜︁Cδ

(︁
|t1 − t2| +ω(ε)

)︁
(90)

Indeed, using (76) and (78), we obtain

Γε ≤ ∥χδ∥Hν+r ∥𝒰ε(t1) − 𝒰ε(t2)∥H−r(ℝ3) + 2∥χδ∥Hν+σ ∥ ˜︁𝒰ε − 𝒰ε∥L∞
loc(ℝ+;H−σ(ℝ3))

≤ ˜︁Cδ

(︃ t2∫︂

t1

dτ ∥∂t𝒰ε(τ)∥H−r(ℝ3) +ω(ε)

)︃
≤ ˜︁Cδ

(︁
|t1 − t2| +ω(ε)

)︁
.

Time continuity estimate (90) allows us to replace the term 𝒮(t/ε)𝒥3,δ
˜︁𝒰ε by its time regularization

𝒥1,η𝒮2(t/ε)𝒥3,δ
˜︁𝒰ε (with η > 0) since the error is controlled as

∥𝒮(t/ε)𝒥1,η𝒥3,δ
˜︁𝒰ε − 𝒮(t/ε)𝒥3,δ

˜︁𝒰ε∥L∞
loc(ℝ+;Hν(ℝ3)) ≤ ˜︁Cδ

(︁
η+ω(ε)

)︁
, (91)

for all ν ≥ 0. Using (91), we then obtain

|Γε
4 − Γε

5| ≲ ˜︁Cδ

(︁
η+ω(ε)

)︁
, with Γε

5 :=

∫︂

ℝ+

dt

∫︂

ℝ3

dx t(𝒮2(t/ε)𝒥1,η𝒥3,δ
˜︁𝒰ε)[D⊥ψ⊥]𝒮2(t/ε)𝒥1,η𝒥3,δ

˜︁𝒰ε . (92)

Therefore, by gathering estimates (87), (88), (89) and (92), and by first taking the limit ε → 0, then the

limit η → 0, and finally the limit δ → 0, we observe that the proof of Lemma 10 is complete, if we prove

Γε
5 → 0, as ε → 0. This is the matter of the rest of the proof.
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In other words, we just have to show limε→0 Γε
5 = 0, when 𝒥1,η𝒥3,δ

˜︁𝒰ε is replaced by a smooth version

of ˜︁𝒰ε, that we denote by 𝒱ε (to simplify the notation) with 𝒱ε ∈ C m(ℝ+;Hν(ℝ3)) for any m ≥ 0 and any

ν ≥ 0 (not uniformly with respect to η and δ). As in the proof of Lemma 5, following the spirit of the proof

of the convergence result in the part III of [34], we introduce 𝔘ε ≡ t(ϕε, tΦε) := t(𝒮1(t/ε) 𝒱ε, t𝒮2(t/ε) 𝒱ε) =

𝒮(t/ε) 𝒱ε, with 𝒱ε = t(ψε, tΨε) ∈ C m(ℝ+;Hν(ℝ3)), and we compute explicity ∇⊥ · (Φε ⊗Φε) via Fourier

transform. Since ℙ⊥Ψε = 0, then Ψε = ∇⊥ψε, with ψε = ∆−1
⊥ ∇⊥ · Ψε. This and commutation between

𝒮 and ℙ⊥ imply ℙ⊥Φε = 0, so that Φε = ∇⊥φε, with φε = ∆−1
⊥ ∇⊥ · Φε. We introduce the Fourier

decompositions

ψε =
1

(2π)3

∫︂

ℝ3

dξ eiξ·x ψ̂ε(t, ξ) , Ψε =
i

(2π)3

∫︂

ℝ3

dξ eiξ·x ψ̂ε(t, ξ)ξ⊥ ,

and we denote by 𝔘̂ε = t(ϕ̂ε, tΦ̂ε = i tξ⊥φ̂ε) the Fourier transform of 𝔘ε ≡ t(ϕε, tΦε = ∇⊥φε). Inserting

the Fourier decomposition of 𝔘ε in the linear equation ∂t 𝔘
ε = ℒ𝔘ε/ε, we are led to solve linear second-order

ODEs in time for the Fourier coefficients ϕ̂ε(t) and φ̂ε(t), with the inital conditions 𝔘̂ε(0) = 𝒱ε(t) and

∂t 𝔘̂
ε(0) = ℒ̂ 𝒱ε(t)/ε, where ℒ̂ = i t(−c ξ⊥· , tξ⊥). Solving these linear ODEs, we obtain for Φε,

Φε = ∇⊥φ
ε =

1

(2π)3

∫︂

ℝ3

dξ eiξ·x iξ⊥
|ξ⊥|

{︂
𝔪̂ε(t, ξ) cos

(︁√
c|ξ⊥| t

ε

)︁
− 1√

c
ψ̂(t, ξ) sin

(︁√
c|ξ⊥| t

ε

)︁}︂
,

where we have introduced 𝔪̂ε = ψ̂ε|ξ⊥| (with 𝔪ε ∈ C m(ℝ+;Hν(ℝ3)), ∀ (m,ν) ≥ 0) to symmetrize the

expressions. We then obtain

Φε ⊗Φε = − 1

2(2π)6

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x θε(t, ξ)θε(t, ζ)(ξ⊥ ⊗ ζ⊥ + ζ⊥ ⊗ ξ⊥) , (93)

with θε(t, ξ) =
(︁
𝔪̂ε(t, ξ)/|ξ⊥|

)︁
cos(

√
c|ξ⊥|t/ε) −

(︁
ψ̂(t, ξ)/(

√
c|ξ⊥|)

)︁
sin(

√
c|ξ⊥|t/ε). Then, we obtain

∇⊥ · (Φε ⊗Φε) = − i

4(2π)6

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ + ζ⊥)|ξ⊥ + ζ⊥|2θε(t, ξ)θε(t, ζ)

+
i

4(2π)6

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥|2 − |ζ⊥|2)θε(t, ξ)θε(t, ζ) . (94)

The first term of the right-hand side of (94), is a gradient and thus its contribution in Γε
5 is null since

∇⊥ · ψ⊥ = 0. In fact, following estimates below, we can show that this term converges in 𝒟′(ℝ∗
+ × ℝ3) to

the pressure term ∇⊥π3, as ε → 0. Then, it remains to show that the second term of the right-hand side of

(94) vanishes in 𝒟′(ℝ∗
+ ×ℝ3), as ε → 0. In fact, because of the presence of the factor 1/|ξ⊥| in the definition

of θε and since, contrary to the periodic case, we now have ψ̂(t, 0) ̸= 0, we have to consider a truncated

version of Φε ⊗ Φε around low frequences (ξ⊥ ≃ 0). For this, for any δ ∈ (0, 1), we consider ψε
δ , ψε

δ, 𝔪ε
δ,

and Φε
δ defined by inverse Fourier transforms of ψ̂ε

δ := ψ̂ε
1{|ξ⊥|≥δ}, ψ̂ε

δ = ψ̂ε
1{|ξ⊥|≥δ}, 𝔪̂ε

δ := |ξ⊥|ψ̂ε
δ and by

Φε
δ := 𝒮2(t/ε) t(ψε

δ ,
t∇⊥ψε

δ). Using Cauchy–Schwarz inequality, we then obtain the error term

∥Φε ⊗Φε −Φε
δ ⊗Φε

δ∥L∞
loc(ℝ+;L∞(ℝ3))

≲

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ (|𝔪̂ε(t, ξ)| + |ψ̂ε(t, ξ)|)1{|ξ⊥|<δ} (|𝔪̂ε(t, ζ)| + |ψ̂ε(t, ζ)|) (1 + |ζ|2)ν/2

(1 + |ζ|2)ν/2



ARTICLE IN PRESS

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

JID:MATPUR AID:103877 /FLA [m3L; v1.381] P.38 (1-42)

38 N. Besse, C. Cheverry / J. Math. Pures Appl. ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

≲

∫︂

ℝ

dξ

(︃ ∫︂

|ξ⊥|≤δ

dξ⊥

)︃1/2(︃∫︂

ℝ2

dξ⊥ (|𝔪̂ε(t, ξ)|2 + |ψ̂ε(t, ξ)|2)

)︃1/2

(︃∫︂

ℝ3

dζ (1 + |ζ|2)ν (|𝔪̂ε(t, ζ)|2 + |ψ̂ε(t, ζ)|2)

)︃1/2(︃∫︂

ℝ3

dζ (1 + |ζ|2)−ν

)︃1/2

≲ δ

∫︂

ℝ

dξ (1 + |ξ |2)−µ/2

(︃∫︂

ℝ2

dξ⊥ (1 + |ξ |2)µ (|𝔪̂ε(t, ξ)|2 + |ψ̂ε(t, ξ)|2)

)︃1/2

(︁
∥𝔪ε∥L∞

loc(ℝ+;Hν(ℝ3)) + ∥ψε∥L∞
loc(ℝ+;Hν(ℝ3))

)︁

≲ δ
(︁
∥𝔪ε∥L∞

loc(ℝ+;Hµ(ℝ3)) + ∥ψε∥L∞
loc(ℝ+;Hµ(ℝ3))

)︁(︁
∥𝔪ε∥L∞

loc(ℝ+;Hν(ℝ3)) + ∥ψε∥L∞
loc(ℝ+;Hν(ℝ3))

)︁
≲ δ ,

for any µ > 1/2 and ν > 3/2. Therefore, we just have to show the claim for Φε
δ with any fixed δ ∈ (0, 1).

This is equivalent to assuming that ψ̂ε and 𝔪̂ε vanish in the tube Tδ(ξ) := {ξ ∈ ℝ3 | |ξ⊥| < δ}, for any

fixed δ ∈ (0, 1), and independently of (t, ξ , ε). With this assumption, we just need to estimate the second

term of the right-hand side of (94) that we decompose as follows,

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥|2 − |ζ⊥|2)θε(t, ξ)θε(t, ζ)

=
1

2

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥|2 − |ζ⊥|2)

{︃

[︂
cos
(︁√
c(|ξ⊥| + |ζ⊥|) t

ε

)︁
+ cos

(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁]︂ 𝔪̂ε(t, ξ)𝔪̂ε(t, ζ)

|ξ⊥||ζ⊥|

−
[︂

sin
(︁√
c(|ξ⊥| + |ζ⊥|) t

ε

)︁
+ sin

(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁]︂ ψ̂ε(t, ξ)𝔪̂ε(t, ζ)√
c|ξ⊥||ζ⊥|

−
[︂

sin
(︁√
c(|ξ⊥| + |ζ⊥|) t

ε

)︁
− sin

(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁]︂ 𝔪̂ε(t, ξ)ψ̂ε(t, ζ)√
c|ξ⊥||ζ⊥|

−
[︂

cos
(︁√
c(|ξ⊥| + |ζ⊥|) t

ε

)︁
− cos

(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁]︂ ψ̂ε(t, ξ)ψ̂ε(t, ζ)

c|ξ⊥||ζ⊥|

}︃
.

The eight terms in the right-hand side of the previous equation can be estimated in a similar way, hence we

only treat one of them, for instance,

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥|2 − |ζ⊥|2) sin
(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁ ψ̂ε(t, ξ)𝔪̂ε(t, ζ)√
c|ξ⊥||ζ⊥| = ∂t𝒯 ε

1 + 𝒯 ε
2 ,

where,

𝒯 ε
1 = −ε

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥| + |ζ⊥|) cos
(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁ ψ̂ε(t, ξ)𝔪̂ε(t, ζ)

c|ξ⊥||ζ⊥| ,

and

𝒯 ε
2 = ε

∫︂

ℝ3

dξ

∫︂

ℝ3

dζ ei(ξ+ζ)·x (ξ⊥ − ζ⊥)(|ξ⊥| + |ζ⊥|) cos
(︁√
c(|ξ⊥| − |ζ⊥|) t

ε

)︁ ∂
∂t

(︃
ψ̂ε(t, ξ)𝔪̂ε(t, ζ)

c|ξ⊥||ζ⊥|

)︃
,
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The proof of Lemma 10 will be complete if we prove that ∥𝒯 ε
1 ∥L∞

loc(ℝ+;L∞(ℝ3)) and ∥𝒯 ε
2 ∥L∞

loc(ℝ+;L∞(ℝ3)) vanish

as ε → 0. Indeed, for any ν > 3/2, using Cauchy–Schwarz inequality, we obtain, for any T ∈ (0,+∞) and

any fixed δ ∈ (0, 1),

∥𝒯 ε
1 ∥L∞

loc(ℝ+;L∞(ℝ3)) ≲ ε sup
t∈[0,T ]

∫︂

T c
δ (ξ)

dξ

∫︂

T c
δ (ζ)

dζ (|ξ⊥|2 + |ζ⊥|2)
|ψ̂ε(t, ξ)|

|ξ⊥|
|𝔪̂ε(t, ζ)|

|ζ⊥|

≲ εδ−1 sup
t∈[0,T ]

(︃∫︂

ℝ3

dξ
1

(1 + |ξ|2)ν/2
(1 + |ξ|2)(ν+1)/2|ψ̂ε(t, ξ)|

)︃

(︃∫︂

ℝ3

dζ
1

(1 + |ζ|2)ν/2
(1 + |ζ|2)(ν+1)/2|𝔪̂ε(t, ζ)|

)︃

≲ εδ−1∥ψε∥L∞
loc(ℝ+;Hν+1(ℝ3))∥𝔪ε∥L∞

loc(ℝ+;Hν+1(ℝ3)) ≲ ε ,

where T c
δ (ξ) denotes the complementary set of Tδ(ξ). In the same way that we have controlled the term

𝒯 ε
1 , we obtain the following estimate for the term 𝒯 ε

2 ,

∥𝒯 ε
2 ∥L∞

loc(ℝ+;L∞(ℝ3)) ≲ εδ−1
(︁
∥∂tψ

ε∥L∞
loc(ℝ+;Hν+1(ℝ3))∥𝔪ε∥L∞

loc(ℝ+;Hν+1(ℝ3))

+ ∥ψε∥L∞
loc(ℝ+;Hν+1(ℝ3))∥∂t𝔪

ε∥L∞
loc(ℝ+;Hν+1(ℝ3)) ≲ ε . □

Appendix A. Toolbox

This section collects lemmas frequently used throughout the text. We start with inequalities for the first-

order Taylor expansion of the power function x ↦→ xγ , with γ > 1. These inequalities, mentioned in [34], can

be seen as “generalized” strong convexity properties of the power function on the non-negative half-line.

Lemma 11 (Convexity properties of the power function). Let x̄ > 0 and γ > 1 be fixed positive real numbers.

For all R ∈]x̄,+∞[, there exist positive constants νi, i = 1, 2, 3, depending on γ, R and x̄, such that

xγ − γxx̄γ−1 + (γ − 1)x̄γ

= xγ − x̄γ − γx̄γ−1(x− x̄) ≥

⎧
⎪⎪⎨
⎪⎪⎩

ν1 |x− x̄|2, 0 ≤ x, γ ≥ 2 ,

ν2 |x− x̄|2, 0 ≤ x ≤ R, 1 < γ < 2 ,

ν3 |x− x̄|γ , R < x, 1 < γ < 2 .

Proof. Knowing that γ > 1, the power function ℝ+ ∋ x ↦→ xγ ∈ ℝ+ is convex on ℝ+, and strongly convex

on any compact set of ℝ∗
+. The details are left to the reader. □

Recall that the Orlicz space Lγ
2(ℝ3) is defined by (34), or see Appendix A in [33].

Lemma 12 (A criterion for belonging to the Orlicz spaces Lγ
2(Ω)). Let γ > 1, f̄ > 0 and δ > 0 be fixed

positive real numbers. Let f ∈ Lγ
loc(ℝ3;ℝ+) be given. Define

Πf̄ ,γ : Lγ
loc(ℝ3;ℝ+) → L1

loc(ℝ3;ℝ+) , Πf̄ ,γ(f) := fγ − γf̄γ−1f + (γ − 1)f̄γ ,

ℨ
γ,f̄
2,δ : Lγ

loc(ℝ3;ℝ+) → L1
loc(ℝ3;ℝ+) , ℨ

γ,f̄
2,δ (f) := |f − f̄ |21{|f−f̄ |≤δ} + |f − f̄ |γ1{|f−f̄ |>δ} .

There exist two constants κ1 and κ2, depending on (f̄ , γ, δ), such that

κ1 ℨ
γ,f̄
2,δ (f) ≤ Πf̄ ,γ(f) ≤ κ2 ℨ

γ,f̄
2,δ (f) .
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It follows that Πf̄ ,γ(f) ∈ L1(ℝ3) if and only if (f − f̄) ∈ Lγ
2(ℝ3).

Proof. The proof is long but straightforward. It mainly relies on Lemma 11, a Taylor formula with integral

remainder, and on the convexity (resp. strong convexity) of x ↦→ xγ on ℝ+ (resp. on any compact set of

ℝ+). The details are left to the reader. Note that this result is similar to the more general Lemma 5.3 in

[33] to which we can also refer the reader for a proof. □

Lemma 13 (A space-time compactness lemma of Simon [47]). Let 𝔅0 ⋐ 𝔅 ⊂ 𝔅1 be Banach spaces (the

embedding 𝔅0 ⋐ 𝔅 is compact and the embedding 𝔅 ⊂ 𝔅1 is continuous). Let I be a compact interval. Fix q

with 1 < q ≤ ∞. Let fε : I → 𝔅 be a family of functions indexed by ε in a directed set2 J . Thus, for all t ∈ I,

we have fε(t) ∈ 𝔅. We assume that {fε}ε∈J is bounded uniformly with respect to ε in Lq(I;𝔅) ∩L1(I;𝔅0)

and that {∂tfε}ε∈J is bounded uniformly with respect to ε in L1(I;𝔅1). Then {fε}ε∈J is relatively compact

in Lp(I;𝔅) for all p with 1 ≤ p < q.

We continue with the following space-time compactness lemma established and used in [33] for the proof

of existence of global weak solutions to the compressible Navier–Stokes equations.

Lemma 14 (A space-time compactness lemma of P.-L. Lions [33]). Let Ω be 𝕋N or ℝN or an open set of ℝN .

Let J be a directed set. Let {gε}ε∈J , and {hε}ε∈J be sequences converging weakly to g and h, respectively in

Lp1

loc(ℝ+;Lp2(Ω)) and Lq1

loc(ℝ+;Lq2(Ω)), where 1 ≤ p1, p2 ≤ ∞ and

1

p1
+

1

q1
= 1 ,

1

p2
+

1

q2
= 1 .

Above, weak convergences are weak–∗ convergences whenever some of the exponents are infinite. Assume, in

addition, that

(i) ∂tgε is bounded in L1
loc(ℝ+;W−α,1(Ω)) for some α ≥ 0 , uniformly in ε .

(ii) ∥hε(t, ·) − hε(t, · + ξ)∥L
q1
loc(ℝ+;Lq2 (Ω)) −−→ 0 as |ξ| → 0 , uniformly in ε .

Then, the sequence {gεhε}ε∈J converges to gh in the sense of distributions in ℝ∗
+ × Ω.

Proof. This is Lemma 5.1 of [33]. The assumption (i) is reminiscent to the Aubin–Lions theorem. The

assumption (ii) is reminiscent to the Kolmogorov–Riesz–Fréchet criterion (e.g., see Theorem 4.26 in [7]) for

compactness (“Lp-versions” of the Ascoli–Arzelà theorem). □

We end with results about mollifiers.

Lemma 15 (Mollification operators). Let χ : ℝd ↦→ ℝ+ be a non-negative function belonging to C ∞
c (ℝd;ℝ+),

and with total mass one. For any η ∈ (0, 1), define χη(·) = η−dχ(·/η). The familly of non-negative functions

of mass one {χη}η>0 are called a family of mollifiers, while the operator 𝒥d,η : 𝒟′(ℝd) ↦→ C ∞(ℝd), defined

as 𝒥d,ηf = χη ∗ f , for any distribution f , is called a mollification operator. The mollification operator

𝒥d,η has the following approximation property. For all f ∈ Hs(ℝd), with s ∈ ℝ and any σ ∈ ℝ such that

0 ≤ s− σ ≤ 1, we have the following approximation error estimate

∥𝒥d,ηf − f∥Hσ(ℝd) ≲ η
s−σ∥f∥Hs(ℝd) . (95)

2 Since a directed set [6,28] is countable or uncountable, the one-parameter family of functions {f}ε∈J , called sequences (respec-
tively subsequences) by abuse of language, must be understood as generalized sequences (respectively subsequences) such as nets
(respectively subnets) in the sense of Moore–Smith (see, e.g., Chapter 4, Sections 11 and 12 in [50]) or filters (respectively, finer
filters) in the sense of Cartan (see, e.g., Chapter 1, Section 6 in [5]).
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Proof. The property 𝒥d,ηf = χη ∗ f ∈ C ∞(ℝd) for any η > 0 and any f ∈ 𝒟′(ℝd) comes from the following

convolution property 𝒟′(ℝd) ∗ 𝒟(ℝd) ⊂ C ∞(ℝd). For the proof of (95), observe

∥𝒥d,ηf − f∥2
Hσ(ℝd) =

∫︂

ℝd

dξ (1 + |ξ|2)σ |ˆ︁χ(ηξ) − 1|2 |f̂(ξ)|2

≤ η2(s−σ)

∫︂

ℝd

dξ
|ˆ︁χ(ηξ) − 1|2
(η |ξ|)2(s−σ)

(1 + |ξ|2)s |f̂(ξ)|2 .

Using the Lebesgue dominated convergence theorem, this last estimate leads to (95), since ˆ︁χ is smooth at

the origin with ˆ︁χ(0) = 1. □
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