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The aim is to justify rigorously the so-called reduced magnetohydrodynamic model
(abbreviated as RMHD), which is widely used in fusion, space and astrophysical
plasmas. Motivated by physics, the focus is on plasmas that are simultaneously
strongly magnetized and anisotropic. We consider conducting fluids that can be
described by viscous and resistive barotropic compressible magnetohydrodynamic
equations. The purpose is to study the asymptotic behavior of global weak solutions,
which do exist, for strongly anisotropic plasmas such as the large aspect ratio
framework. We prove that such anisotropic weak solutions converge to the weak
solutions of the RMHD equations. Rigorous justification of this limit is performed
both in a periodic domain and in the whole space. It turns out that the resulting
system is incompressible only in the perpendicular direction to the external strong
magnetic field, whereas it involves compressible features in the parallel direction. In
order to pass to the singular limit in the perpendicular direction we exploit, among
others, tools elaborated for proving the low Mach number limit of compressible
neutral fluid flows such as, here, the introduction of a fast oscillatory unitary group
associated to the dynamics of transverse fast magnetosonic waves. In the parallel
direction, we bring out compactness arguments and particular cancellations coming

from the structure of our equations.
© 2026 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, Al training, and similar technologies.

RESUME

L’objectif de ce travail est de justifier rigoureusement le modele de la magnétohydro-
dynamique réduite (en abrégé RMHD) qui est abondamment utilisé dans les plasmas
de fusion, spatiaux et astrophysiques. Motivés par des considérations physiques,
nous nous concentrons sur des plasmas qui sont a la fois fortement magnétisés et
anisotropes. Plus précisément, nous considérons des fluides conducteurs qui peuvent
étre décrits par les équations de la magnétohydrodynamique compressible barotrope,
visqueuse et résistive. Le but est alors d’étudier le comportement asymptotique
des solutions faibles globales, qui existent, pour des plasmas fortement anisotropes
tels que ceux a grand rapport d’aspect. Nous prouvons que ces solutions faibles
anisotropes convergent vers les solutions faibles des équations de la RMHD. Une
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justification rigoureuse de cette limite est effectuée a la fois sur un domaine
périodique et dans l’espace entier. Il s’avere que le systeme limite obtenu n’est
incompressible que dans la direction perpendiculaire au champ magnétique fort
externe, tandis qu’il présente des caractéristiques compressibles dans la direction
parallele. Afin de passer a la limite singuliére dans la direction perpendiculaire, nous
exploitons, entre autres, des outils élaborés pour prouver la limite de faible nombre
de Mach des écoulements de fluides neutres compressibles, tels qu’ici I'introduction
d’un groupe unitaire, fortement oscillant, associé a la dynamique des ondes magnéto-
soniques transverses rapides. Dans la direction parallele, nous mettons en oeuvre
des arguments de compacité et des compensations particuliéres provenant de la

structure des équations.
© 2026 Elsevier Masson SAS. All rights are reserved, including those for text and
data mining, Al training, and similar technologies.
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1. Introduction

Equations of reduced magnetohydrodynamics, hereafter abbreviated as RMHD, are extensively used in
fusion, space and astrophysical plasmas. They are highly prized by plasma physicists for the following
reasons. First, they allow interesting theoretical and analytical developments; second they are the source
of numerically tractable models which are used to bring forth codes that are routinely exploited [3,10,32,
36-39]. The RMHD model was introduced in the seventhies [26,48] in the context of fusion plasmas. It
was followed by many systematic studies and generalizations including more and more physical effects and
refinements [12,13,22,24,29,32,49,51,52]. At present, there is a vast literature about formal derivations and
applications of RMHD models. The two references [4,41] are good introductions to the subject, with many
references. RMHD equations are still a very active research field, including recent progress in extended
magnetohydrodynamics [1]. At the same time, the work [2] has highlighted the importance and the inherent
difficulties of working under anisotropic conditions.

1.1. The penalized system

Let Q be a three-dimensional domain, which is either the periodic box T3 := (R/27Z)3 or the whole
space R3. The time evolution on € of plasmas is basically described by isentropic compressible magneto-
hydrodynamics. The unknowns are made of the fluid density p € R, the fluid velocity v € R and the
magnetic field B € R3. Including viscous (1 > 0 and A > 0) and resistive (1 > 0) effects, we consider on
R4 x € the system of MHD equations

8tp+v(pv):07
O(Pv)+V - (pveVv)+Vp+Bx (VXxB)—pAv—-AV(V-v)=0, (1)
B+ Vx (Bxv)—mAB=0,
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together with the divergence-free condition V - B = 0 and the barotropic state law p = ap?, where a > 0
and v > 1. The symbol x denotes the cross product of vectors of R, while the symbol ® stands for the
tensor product of vectors. Given (n,m) € N2, we take the convention

(V-(wawv), => 0i(uw;), w="(ur, - um) ER™, v="v1,--+,0,) ER".
j=1

Following preceding results about compressible Navier—Stokes equations [15,33], the existence of global (in
time) weak solutions to system (1) has been obtained in [23]. Now, most plasmas are magnetized. This
means that B is, in a first rough approximation, a given external non-zero magnetic field Be. For simplicity,
we assume that B is constant. After rotation, it can always be adjusted in such a way that B, = Bey
with B € R% and ¢ := ?(0,0,1). The direction ey is called parallel. Given a vector field like B (or v),
we can decompose B into its parallel component By = B3 := B - ¢ € R and its perpendicular component
By :=%By,Bs) € R? so that B = {(*B_,By). We work away from vacuum, near a constant density which
can always be put in the form B2 p for some p € R?* . Observe that (B2 p,0,B,) is a constant solution to
(1). Motivated by physics, particularly by considerations of large aspect ratio and geometrical optics (see
Section 3), we incorporate a strong spatial anisotropy. More precisely, we keep x| := (x1,%2) = ¢ = (1, 22)

and we replace the vertical direction by z; = x3 := ex3 with 0 < ¢ <« 1. The above gradient operator
becomes

Ve:="("VL,0)+eVy, Vi :="0,d), Vi=e o, O =0s. (2)
Accordingly, a distinction must be drawn between A := 0%, + 93, and Ay = 03;. We want to study

the behavior at large time scales t := ¢t ~ 1 of small perturbations, of size ¢, of the stationary solution
(B2 p,0,B,). To this end, we seek solutions in the form

(p,v,B)(¢,%x) = ([B2 p°,ev’, B(ey +€BE))(5t,m1,X2,5X3).

The unknowns are now (p°,v°, B)(t,x), while the pressure is given by p° = a (p°)?, with a = B20~Vq.
Then, the system (1) can be reformulated according to the following equations

Op® + Ve (p70°) =0,
1 1
O (p°v®) + Ve - (p°0° @0°) + = Vep® + g(en +eB*) x (Ve x BY)

— pL ALV — pi AT — AV (Ve -0%) =0,

1
0, B® + EVE X ((ell + €B8) X UE) — ’l’]i_AJ_BE — ’IﬁAHBE =0,
together with
Ve -BF=0. (4)

Without loss of generality, just to simplify the presentation, we can work with p = 1. The second equation
(for the momentum p®v¢) in (3) indicates that p° should be like p* = p 4+ O(e). With this in mind, we can
introduce the new state variable ¢° as indicated below, and expand p° in powers of € to obtain

p"=1+¢0°%, p°=a+ept+ 0O, P :=b0", b:=ar~. (5)

To see the heuristics which lead to our model, it is instructive to interpret (3) in terms of (o°,v¢, Bf), and
then to extract the singular part. We find

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

© 0 N o a b~ W N =

A DA D S B DS DB DSBS WOWW W W W W W WWN N DNDNDNDNDNDNDNDDNDN R R R s R s s
o N o a0 b~ W N B O © 00 N O g P W N FHF O VW 0O N P W NN H O VW 0 N o™ WN +H O



© 0 N o aa b~ W N o=

IS U S O T
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
a7
48

JID:MATPUR  AID:103877 /FLA [m3L; v1.381] P.4(1-42)
4 N. Besse, C. Cheverry / J. Math. Pures Appl. sss (sees) sseeee

Oro° + %VL 01 =0(1),
o + é Vi(p*+ Bj)=0(1), owvj = 0(1), (6)
Oy ﬁJréVle:O(l), oBT =0(1).

According to the terminology of Schochet [45], the asymptotic regime is called:

e slow when the first-order time derivative of the solution remains bounded uniformly with respect to the
small paramater ¢ (as ¢ — 0). In view of (6), this means that

Vi-vi=0(), Vip'+Bj)=0(). (7)

e fast when it is not slow. In this case, rapid oscillations with non-vanishing amplitudes can persist on a
long time scale, preventing the convergence in a usual strong sense. Since the singular part involves the
sole action of the operator V | , it induces a propagation which can only be achieved with respect to the
perpendicular direction. Then, because Alfvén waves do not propagate in the directions orthogonal to
the ambiant magnetic field (here e)), we are necessarily concerned with transverse fast magnetosonic
waves. This claim is justified in Section 3.1, where the eigenmodes of the linear (singular) system (6)
are investigated.

At time t = 0, we start with
th:o =05, Urt:O =g, |8t:0 =B;. (8)
In coherence with (4), we must impose V. - B§ = 0. The initial data is said to be prepared when
Vi =0(@),  Vi(bos+ Bgy) =0(e). (9)

At this stage, it should be noted that the structure of the penalized terms inside (6) and of the subsequent
condition (7) are different from isotropic situations [25]: the fluid should be almost incompressible only in
the perpendicular direction (the action of the operator V| appears in place of the full gradient V); the
components gj and Bj, must be approximately linked together. To our knowledge, the asymptotic study
of systems like (3) has not yet been undertaken neither in a smooth context or for weak solutions.

From now on, we assume that the positive perpendicular and parallel shear viscosities u5 > 0 and uj > 0,
as well as the positive bulk viscosity A\* > 0 are adjusted in such a way that

i —pr >0, pj— >0, AX¥—A>0, as &—04. (10)
Similarly the positive perpendicular and parallel resistivities 7 > 0 and nj > 0 must satisfy
nT —nL >0, nj—m >0, as &—04. (11)

The system (3) is equipped with a conserved energy. We mainly assume that the energy of the initial data
(0§, v§, BE) is bounded uniformly with respect to ¢, see (27) and (36). We add technical conditions which are

distinct when = T3 (Subsection 2.3) and when Q = R? (Subsection 2.4) to guarantee that the difference

2l
loc

(specified further), we have

p5 — 1 vanishes in L () when ¢ goes to zero. Then, up to a subsequence and at least in a weak sense
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05 == — 00, vSévOELQ, BSABOELQ, as € — 0.

We will show (Theorems 1 and 2) that, always up to a subsequence, the difference p® — 1 vanishes strongly
in L (R, ; L}

. 1.(£)) and that, at least in a weak sense, we have'

€ p671 5 €
0° = . — 9, V- — v, B*—B, as e—04.

The next stage is to identify the limit (o, v, B).
1.2. The RMHD model

The perpendicular component B, := !(B;, By) € R? of B and the perpendicular component v, :=
t(v1,v9) € R? of v can be identified independently by solving the following nonlinear closed system

{@BL 0L +V1 - (BL®vy —vy ®B1)—n1A1 B —mABL =0, 12)
Ol —WBL+V, - (v1®v =B ®B1)+Vim—puiAjvy —mdAyve =0,
together with the (transverse velocity) divergence-free condition
Vi-v, =0, (13)
and the initial data
(B1,v1)j=0 = (P1Bor,Pivg1) € L*(RY), (14)

where the projection P, denotes the (two-dimensional) transverse Leray operator. Passing to the weak limit
in V.- B§ = 0, we can easily infer that V, - By, = 0, and therefore By, = IP; By, . The same applies
concerning v in the case of prepared data. For unprepared data vf, in general, we find that vy, # P g, .
Still, we will show in Section 4.5 that the limit initial condition is P, vg; and not vy . This passage from
vo to Pjvg) reveals the underlying presence of a time boundary layer (which may arise in the absence
of preparation). In the second equation of (12), the pressure 7 plays the role of a Lagrange multiplier to
ensure the transverse incompressibility of the flow. Since

Vi (BL®vi —vy ®By)="0:(B1vs — v1 B2),—01(By vz — v1 Ba)),
exploiting (13), we can assert that
O(Vi-Bi)—niAy(VL-Biy)—mAy(Vye-B1)=0.
It follows that the divergence-free condition on By, is propagated. Retain that
Vi-B, =0. (15)

The existence of global-in-time weak solutions to (12)-(13)-(14) can be obtained from classical methods in
[14,42]. Note that it can be deduced indirectly from the existence (for all € > 0) of weak solutions to (3).
Indeed, as will be seen, the rigorous justification of the passage to the limit (¢ — 0) in the system (3)

! In the periodic case, let p§ be the constant (close to 1) defined by (28). When Q = T®, as stated in Theorem 1, the definition
of o should be replaced by o° := (p° — p§)/e.
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provides another way to construct global weak solutions of (12)-(13)-(14). Observe also that the system
is linear in the parallel direction. Thus, these global existence results remain true even when n; = 0 and
= 0.

Now, the treatment of the parallel components (By,v)) differs completely from what is done usually.
This is due to the (unconventional) anisotropic context which forces to look at (Bf,vj) separately. On the
one hand, (Bf,v§) appears as a leading order term, and therefore its weak limit (B, v) must contribute
to the main description of the flow. As such, it must be incorporated in the RMHD model. On the other
hand, to some extent, (Bf,vj) is (partly) dealt in the equations as a second order term. It follows that the
determination of its weak limit (By, v ) is decoupled from the one of (B, v, ). In fact, knowing the content
of (By,v,), with the constant ¢ := 1+ (1/b) > 1, we have access to (By, vy ) through

{C(atBu + (v -V1)By) — 0oy — (BL - Vi)vy —ni AL By —mAyBy =0, (16)
Oro + (v - Vi )oy =By — (BL-V1)By — pr Aoy — il =0,
and the initial data

(B, vi) =0 = (Bou, von), By := (Boi — 00)/c. (17)

This is the viscous version of a symmetric linear system involving the known variable coefficients v, and B} .
For smooth data v; and B, the global existence is obvious. Moreover, due to (13) and (15), usual energy
estimates concerning (By,v) do apply without consuming any regularity on v, and B, . It follows that
global solutions do exist even when the coefficients v, and B, are issued from the weak solution (v, B])
in iz, (R 5 L2(2)) 1 L2, Ry, H1(2)) to (12).

Given € > 0, the fluid is slightly compressible since p* = 1 + € ¢° with ¢° ~ ¢. The expression ¢° (and
its weak limit p) plays at the level of (3) the part of a one-order corrector which keeps track of the original
compressibility. Now, looking at (6), it acts in the equations with the same order as the components v]
and Bj. It is therefore reasonable to find a link between ¢, v; and Bj. In view of the second relation inside
(7), we can already infer that p + By = 0, where p := b is the weak limit of p®. By this way, B} acquires
asymptotically the status of a pressure which can serve to measure some compressibility in the parallel
direction. For prepared data, that is when By, + bgg = 0, we start with By = Byy. Otherwise, for general
unprepared data (which is our framework), we find that Boy #Z By, see Subsection 4.7. Again, this is the
hallmark of a boundary layer occuring at time ¢ = 0 concerning the component Bj.

1.8. Global overview

This paper is devoted to the rigorous justification of the convergence of the global weak solutions to (3)
to those of (12)-(17). As already mentioned, the nature of the singular limit depends on many factors.

1.3.1. Preceding results

The hyperbolic version of system (3), which is obtained by removing viscosities and resistivities, falls
into the framework of the theory of singular limits of quasilinear hyperbolic systems with large parameters.
This approach is restricted to smooth solutions (say H*® with s large enough). It was originally developed
by Klainerman and Majda [30,31,35]. In these circumstances, retain that:

o In the smooth prepared setting, as a corollary of Theorem 3 in [30] (see also §2.1 & §2.4 in [35], and
references [43,44]), a convergence result does exist [21] concerning (3) without diffusion terms. It holds
as long as the solution of the limit equations remains smooth. In a related framework, namely with a
strong constant magnetic field but without spatial anisotropy, the authors of [25] study the singular
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limit of the local-in-time smooth solution of the ideal MHD on a bounded domain, with convenient
boundary conditions and prepared initial data. It turns out that the limit system in [25] is essentially
two-dimensional since the spatial variable x3 plays the role of a label (no differential nor integral operator
with respect to x3). In [2], this method is successfully applied to the (more complex) XMHD system.
Note also that we can appeal to Theorem 4 in [30] (dealing with the diffusive version of Theorem 3 in
[30]; see also Theorem 4.1 in [46]) to justify the strong convergence on a fixed time interval of smooth
prepared solutions to (3) to those of (12)-(17).

 In the smooth unprepared setting, one possible strategy [45] is first to exhibit a smooth (in its arguments)
limit profile with a double number of variables (one set representing slow variations, the other set fast
ones) satisfying an appropriate limit equation (called the modulation equation). Second, it is to prove
that the smooth solution of the original system converges in a strong sense on a uniform time interval
to this profile evaluated at the slow and fast variables.

Weak solutions can also be considered, provided that parabolic contributions are incorporated. This allows
to relax the regularity conditions, to reach all times, and therefore to reinforce the universality of reduced
models. A way to make progress in this direction has been initiated in [34] which (for unprepared data)
exploits the unitary group method [20,45] and compactness arguments to construct a filtered profile for the
irrotational part of the velocity field. From this filtered profile, the authors of [34] construct a sequence of
approximations to the limit solution. Then, they exploit this sequence to pass to the limit in the nonlinear
terms. By doing so, they observe that the solenoidal part of the velocity field inherits a strong convergence,
while only weak convergence results are available concerning the irrotational part.

The discussion is very sensitive to the type of domain: T2 or R®. In the case of the whole space, the
proof of [34] has been simplified in [11] by using Strichartz estimates [17,27]. This allows to improve the
convergence result of the irrotational part of the velocity field, which is precisely the part containing the
rapid oscillating acoustic waves. Indeed, the authors of [11] remark that this irrotational part satisfies a
linear (isotropic) wave equation. From there, due to dispersive effects (in all spatial variables), it must
asymptotically vanish in a strong sense.

1.8.2. The anisotropic complications

We clarify here the important unsolved specificities induced by the implementation of distinct spatial
scales. In the smooth prepared context, new problems already arise. For instance, as observed in [2], the
anisotropy can preclude obtaining a complete WKB expansion. Even in the smooth (prepared or not) case,
the particularities related to the asymptotic study of (3) have not yet been explored. Inspired by [34], our
aim is to go directly to weak solutions. We consider viscous and resistive situations vs. (almost) hyperbolic;
global weak solutions vs. local strong solutions; LP and periodic solutions vs. Sobolev solutions; and general
data vs. prepared data. In so doing, the smooth strategies do not help. The good benchmark is [34]. But
MHD equations are quite different from compressible fluid equations [34]. And thus, the discussion must be
adapted to cover the magnetic effects. There are many important challenges to elucidate, especially:

o The unitary group method involves the quantities Q v§ and bp® + Bj. It allows to filter out fast
oscillating magnetosonic waves propagating in the transverse directions in ways that have not yet been
investigated (even in the smooth context). Note in particular that b o+ By = 0, instead of simply o =0
in [34].

e The nonlinear expressions involving B¢ are, of course, absent in [34].

» Even the tensor product p*v® ® v® must be dealt differently. Indeed, in our setting, both vj and P, v§
are left aside by the filtering. Other arguments must be introduced to understand what happens at the
level of v§ and Bj, that is how to recover (16). To deal with this issue, we exploit particular cancellations
provided by the structure of system (3) that we combine with some compactness results developed in [33]
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in order to prove the existence of weak solutions to the compressible Navier—Stokes equations. Indeed,
in particular from (6), we observe that 9,(Bj — ¢°) = O(1). Then, the quantity (B — ¢°) will yield the
right unknown to prove the limit equation for B). Moreover, in the case of the whole space, in contrast
to [11], we cannot exploit (isotropic) Strichartz estimates to obtain the strong convergence of QL v9,
since the resulting wave equation is posed only in the perpendicular spatial variables x, the parallel
spatial variable x; being seen as a continuous label. Therefore, a natural and interesting open question
arises: could only transverse dispersive effects (and thus some kind of anisotropic Strichartz’s estimates)
be used to show that @ v§ vanishes strongly? This question will be addressed in further work.

1.8.3. Plan of the work

The paper is organized as follows. In Section 2, we state our main results. In Section 3, we come back
to the physical motivations and to the origin of our anisotropic scaling. In Sections 4 and 5, we prove the
convergence of the compressible MHD equations (3)-(4) to the RMHD equations (12)-(13)-(16). We start
in Section 4 with the case of a periodic domain. Then, in Section 5, we perform this investigation in the
whole space. Finally, in Appendix A, we recall functional analysis results which are exploited throughout
the paper.

2. Main results

In Subsection 2.1, we specify some notations. In Subsection 2.2, we recall the notion of weak solutions.
In Subsection 2.3, we state our main results in the case of T3. In Subsection 2.4, we do the same for R3.

2.1. Notation

Let Q be either the periodic domain T? or the whole space R3. For s € R and 1 < p < oo, we shall use
the standard non-homogeneous Sobolev spaces

WoP(Q) = (1= A)2LP(Q),  H*(Q) = W**(Q),
and their homogeneous versions
WHP(Q) = (=A)2LP(Q),  HY(Q) = W*(Q).

We introduce the transverse Leray projection operator Py : WP (Q; R?) — W*P(2;R?) onto vector fields
which are divergence-free in the perpendicular direction,

vy =Piv; +Quv,, Vi-(Pivi)=0, Vi x(Quvy)=0, Vo, € L*(R?),

where V| X v; := 01vg — O2v1. From the Mikhlin—H6rmander Fourier multipliers theorem, the operators
P, and Q, are continuous maps from the Sobolev space W*P?(2;R?) into itself for s € R and 1 < p < oo.
In addition [34], for all § > 0, we have the following continuous embedding P, (L*(Q)) < W=%1(Q).
This embedding can be justified simply by observing that on the one hand the operators P; and Q
are continuous maps from L!(£2;R?) into the Lorentz space L1*°(Q) (or weak L!(f2); see, e.g., Theorem
5.3.3 in [19]) and on the other hand the continuous embedding L'>°(Q) — W~%1(Q) holds. We denote
by €(0,T;L" ... (), the space of functions which are continuous with respect to ¢ € [0,77], with values
in LP(Q), with the weak topology. Moreover, we introduce the differential operator D. = *V.. The scalar
product between two matrices M; and Ms is defined as My : My = Zij M5 Ms;;. Moreover, given two

vectors B; € R? and v € RQ, we adopt below the convention B; X v, := By vy, — Bovy € R.
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2.2. Weak solutions
Weak solutions of RMHD equations will be recovered by passing to the limit (¢ — 0,) in the weak
formulation associated with (3)-(4). It is therefore important to specify what is meant by a weak solution
to (3)-(4) and to (12)-(13)-(16) when © = T? and when = R3. Given initial data as in (8), with
PG € L),  v§, B§, V/pjvg € L*(Q), V.-Bj=0in D'(Q), (18)
a triplet (p®,v®, B?) satisfying
7€ Lise(Rys L (), (v%, B, Vp*v®) € Lig.(Ry; L*(Q)), (19)

is said to be a weak solution of (3)-(4) if for all ¥ = (!¢, ) € €°(R; x Q;R3) and for all ¢ €
€ (R4 x ;R) with p* = a (p°)7, we have

/da:pggo +/dt/dazp dp+v°-Veop) =0, (20)
Q 0

/d:rpovoj_ ¥ (0 —|—/dt/dw(pvl OpL + (p°vL ®v° — BL @ BY) : Dy

Q 0

1 B B€2
Jr{EQPng E” | 2' }Vl 1 — BT -+ pa v - Ay + o IId’L) =0, (21)

/dffpgvgw/fll (0) + /dt/ (P Vi + (p7vf ®v° — Bj ® B®) : Dethy
Q 0 @

{1
+4-p°
€

/deM vL(0 +/dt/ (Bjatm—viam—(Bixvimxm
Q 0 Q

}aﬂ/ill + L1 Vi ALY+ v Ay 4+ eAv® - Vg(aﬂ/n)) =0, (22)

+eviBY - Oy —eBjvl - O + 1 BT - ALY +miBT - AII"/’J.) =0, (23)

7 1
/deO||¢|| +/dt/dx(B€|3t7,/J| + gvi Vi
Q 0
—viBT - Vi + BjvS - Viy + i BiA Yy + BﬁAWu) =0, (24)

/dx Bf(t) - Vep(t) =0, VteR,. (25)
Q

The notion of weak solution to (12)-(13) is obtained by testing (12) against all 10, € €>°(Ry x ; R?) which
are such that V -4, = 0. Concerning (16), it suffices to select scalar test functions.
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2.8. The periodic case
This is when = T?. The functional framework is based on [23,34]. Select initial data satisfying

ﬂi=D:pSGL”’(T3), PSZO, \ P E €L2 TS
{pSvS if pg #0
0 if pg:O

[=Xy]

(psve)hzg =m } c LQ"//(’Y‘FU (T3) ,

(26)

|t:0

¢ =B;elL*T%), V.-Bi=0, /da:BS:O.

T3

We assume that these regularity assumptions are uniform with respect to . Furthermore, given a constant
Co (not depending on ¢), we impose

1 a N _
3 /dx (k5lv51* + 1B51?) + ETp—Y /dm ((P)” = 5(p3) + (v = D(P5)") < Co.- (27)
T3 T3
This is completed by
— 1
pgzzm/dxpgﬁl, ase — 0. (28)
3

This bound gives access to weak compactness. Modulo the extraction of subsequences (which are not speci-
fied), we can say that /pjv§ and B converge weakly in L2(T?) to ug and By respectively. From (27), some
information on p§ and gf := (p§— 0§)/c can also be extracted. We will first show (see the proof of Lemma 1)
that p§ — 1 in L7(T®)—strong. Then, we will see that gf — o in L®(T3)—weak for x := min{2,~}.
Using /pju§ — wuo in L?*(T?)—weak and p§ — 1 in L7(T?)—strong, we obtain pjv§ — ug = vo in
L2/ (+H1)(T3) —weak.

As soon as v > 3/2, the contribution [23] furnishes a weak solution to (3)-(4) with

,0 € Lloc (R+7 LV(TS)) ) v® € leoc (R+7 Hl(Tg)) )
VP € L (R LATY) s pfv° € LG (Rys L/ OO (T) 0 e (Rys Ll V(T) o
B e Lloc (R-i-; L2(T3)) N Gloc (R-‘m Lweak(TS)) N Lloc (R-‘r; Hl(T3)) ) /dl‘ B*=0.
T3
The mass is conserved
. 1 € _ ¢
P* = TE dzx p° = pj,
T3
and thus, using (28), we deduce that p® — 1, as € — 0. Moreover, we have two energy inequalities
t
E°(t) + /ds De(s) <Ej, a.e.te[0,+00), (30)

0

with E € {&1, &}, where for i = 1,2,
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gi) = [do (3P4 BBP - G0) . & = [ (Bogledl? + BSE 4 1LG) . @)
Q Q
DF = [ do (5 9107+ 00072 + NI o2 o VLB o 5P (32)
Q

and

a a

IL(p°) = m(ﬂg)ﬂY ;o Ia(p®) = m((ﬁeﬂ =" () + (v = (%)) . (33)

For i = 1, the inequality (30) is a consequence of straightforward calculation involving (3). Using the mass
conservation, we can check that the inequality (30) for ¢ = 2 is equivalent to (30) for ¢ = 1. The case i = 2
is introduced because it allows a better comparison of p* with p=.

Theorem 1 (Convergence of MHD to RMHD on a periodic domain). Assume Q@ = T3 and v > 3/2. Con-
sider a sequence {(p°,v%, B%)}.>0 of weak solutions to the compressible MHD system (3)-(4) with initial
data {(p§,v5, B§)}es0 as in (27). Let us set o := (p° — p¥)/e. Then, up to a subsequence, the family
{(p®, 0%, v%, B®) }cs0 converges to (1, 0,v, B) as indicated below

p° — 1 in LS (R, ; LY(T3))—strong,
o — o in LS (Ry; L7(T?))—weak—*, & =min{2,~},
PivS —Pivy =vy in L (Ry;LP N H(T?))—strong, 1<p<6, 0<s<1,
Quui — 0 in Lh(Ry; H'(T?) —weak,
v — vy in L (Ry; HY(T?))—weak,
BS — B, in L[ .(Ry;L*(T?)—strong, 1<7< o0,
Bf — By in L (Ry; HY(T?))—weak N LS (Ry; L2(T?)) —weak—* .
The limit point (v, B) is a weak solution to the RMHD equations (12)-(13)-(16) with initial data
(BL,v1)|,_o = (BoL,Pivoyr) € L*(T?), (Bi,v1)},_o = (Bon,von) € L*(T?),

where Boy is as in (17), and it satisfies the following regularity properties

B e LS (R IA(T9) N L (R H'(T), v e LS (Ry L(T%) N L, (Rys H'(TP)).

loc loc loc

Moreover, the components o and By are linked together by the relation bo + By = 0, for a.e. (t,x) €
10, 400 x T3.

2.4. The whole space case

This is when Q = R3. In order to define weak solutions in the whole space, we need to introduce the
following special type of Orlicz spaces L1(€2) (see Appendix A of [33] for more details on these spaces),

LP(Q) = {f € Li,(Q) | fl{s<sy € LUQ), flyp=ey € LP(Q), 6 >0}, (34)

where the function 15 denotes the indicator function of the set S. Obviously L5(Q) = LP(Q2).
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The functional framework is based on [23,34]. Select initial data satisfying

Py = PG € Line(®?), pj—1€LI(R?), 7>3/2, pj=0, /ojufe L*(R?),
{pévé if p§#0

(000 = 5 =
=TT 0 i =0

s,
(35)

ﬁ:O:BS€L2(R3)7 VEBSZO, \/diEBS:O7

R3

pg— 1, v;—0, Bf—0, as]|z|]— .

We assume that these regularity assumptions are uniform with respect to €. Furthermore, given a constant
Cp (not depending on €), we impose

1 a

5 [ 4 ol +1B5) + 55 [ e (6 — 906+ =) < . (36)

R3 R3

This bound gives access to weak compactness. Modulo the extraction of subsequences (which are not spec-
ified) we can say that \/pjv§ and Bf converge weakly in L*(R?) to ug and By respectively. From (36),
we will show (see the proof of Lemma 6) the subsequent results. First, we will obtain (uniformly in €) the
bounds p§ € L .(R?), 0§ € L5 N LE (R3), with x = min{2,~}, as well as pjv € LQ’Y/(VH)(RS). Second, we

loc loc loc

will obtain p§ — 1 in L3 N L]

loc

in L2(R?)—weak and p§ — 1 in L]

loc

As soon as v > 3/2, the contribution [23] furnishes a weak solution to (3)-(4) with

loc

(R?)—strong, and of — go in Lf (R*)—weak. Moreover, using +/pgv§ — uo

(R%)—strong, we obtain p§u§ — ug = v in L/ 7T (R3)—weak.

pE S Lﬁfc(R-i-; L?:)C(RS)) ) pe —-1le LIO(;)C(R-"-; Lg(RS)) ) vve € LIQOC(R"F; Lg(R3)) )

o0 5% 2 1 2 1
VIV € L Ry LA(R?)),  pfof € Lis, (Ry; L/ O TV (RY)) 0 Ghoe (Rys Ll S (R?))
37
B® € Lis.(Ry; L*(R*) N Gioc(Ry; La i (R?)) N Lo (Rys H (T?)) / dxB® =0, 37

weak

T3

p°— 1, v*—0, B*—0, as]|z]— .

Moreover, we have the energy inequality (30) with E® = &5 given by the formula (31) and II; = II3, where
II3 is defined by

I5(6°) = 5 j ((0°) =" +v—1). (38)

e2(y—1
This energy inequality is the consequence of straightforward calculation involving (3).

Theorem 2 (Convergence of MHD to RMHD on the whole space). Assume Q = R3 and v > 3/2. Con-
sider {(p®,v%, B%)}c>0 a sequence of weak solutions to the compressible MHD system (3)-(4) with initial
data {(p§,v5, B§)}eso as in (36). Let us set o := (p° — 1)/e. Then, up to a subsequence, the family
{(p®, 0%, v%, B®)}c=0 converge to (1, 0,v, B) as indicated below
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p°—1 in LS. (Ry;LINLYL. N H~%(R?))—strong, o >1/2,

o — o in L(Ry; LE . NH %R3))—weak*, k=min{2,7}, a>1/2,

P ONHE (R¥))—strong, 1<p<6, 0<s<l1,
Quvi — 0 in L (Ry; H' (R?))—weak,

v — vy in L (Ry; HY(R?)) —weak,

BT — B, in L} .(Ry;L} (R%)—strong, 1<r<oo,

B — By in L3 .(Ry; H'(R?))—weak N LS (Ry; L?(R?)) —weak—* .

P,vS — Pivy, =v; in L3 (Ry;LP

The limit point (v, B) is a weak solution to the RMHD equations (12)-(13)-(16) with initial data

(BL,v1),_o = (PLBoL,Pivo1) € L*(R?), (Bu,vn),_, = (Bon,vor) € L*(R?),

lt=0

where Boy is as in (17), and it satisfies the following regularity properties

B € Lig (R LA(R?) N Ly (Ry; H (R®)), v € Lie(Rys LH(T?)) N L (Rys H(R?)) .
Moreover, the components o and By are linked together by the relation bo + By = 0, for a.e. (t,z) €
10, +00[xR3.

3. Physical motivations and scaling

The dimensional magnetohydrodynamic equations reads

dp+V-(pv) =0,
O(pv)+ V- (pv@Vv)+ Vp+Bx (VXB)—pu A v—mAyw—-2AV(V-v)=0, (39)
0B+ V x (BXV)—HLALB—T]HAHBZO,

with the divergence-free condition V - B = 0, and the barotropic closure p = p(p) = ap”?, v > 1. The
triplet (p, v, B) = (p, v, B)(t,x1,x)) € Ry x R3 x R? denotes respectively the dimensional fluid density,
fluid velocity, and magnetic field. The variable t represents the dimensional time variable, while the two-
dimensional (resp. one-dimensional) variable x (resp. xj) represents the perpendicular (resp. parallel)
dimensional space variable.

3.1. Large aspect ratio framework

Anisotopic plasmas with a strong background magnetic field are ubiquitus in astrophysical, space and
fusion sciences. As an example, for fusion plasmas, the straight rectangular tokamak model involves a very
long periodic column, whose section is a small periodic rectangle. The corresponding geometry and scalings
are detailed carefully in [48]. Another example comes from various astrophysical plasmas such as the solar
wind or the magnetosheath for which the underlying RMHD ordering is precisely described in [41]. In order
to obtain the dimensionless MHD equations (3), we must first nondimensionalize equations (39), and then
choose a scaling. Putting dimensions into the “bar” quantities, we define the dimensionless unknowns and
variables as t = t¢, x| = Xz, X =X 2y, KL = B pL, W= R, A= AN ML =TLnL, =T,
a=aa,p=pp,v=vo,and B =B B. From this, and the barotropic state law, we deduce the dimensionless
pressure as p = pp with p = ap? and p = ap”. We also define important physical quantities such as the
Alfvén velocity va := B/y/p, the sound velocity v := 1/vp/p, the parameter 3 := p/|B|? = v2/(yv?), the
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Alfvén number €4 := V/v4 and the Mach number ey, := v/vs = £4/(v/73). Here, we suppose that the
parameter (3 is of order one, and thus we set 8 = 1. This configuration is called the high 8 ordering [49],
and often appears in space plasmas [3,29,38]. In other situations, such as plasmas of tokamaks [13,24,26],
the parameter 8 can be relatively small; this is the so-called low g regim. Indeed, since 5 measures the ratio
of the fluid pressure to the magnetic pressure, a magnetically well-confined plasmas is achieved for low 5.
Since here we choose 3 = 1, we have v, = \/yva ~ va.

In order to understand which parts of the solution of the MHD equations (3) are eliminated in the reduced
model (12)-(17), we now recall the different types of (linear) waves propagating in a plasma governed by
the MHD equations (39). Dropping viscosities and resistivities terms, it is well-known [40] that the system
(39) is hyperbolic, but not strictly hyperbolic since some eigenvalues may coincide. Linearizing the system
(39) around the constant stationary solution (p, 0, B b), where b is a unit vector, we obtain a linear system
whose the Jacobian has real eigenvalues [18]. The set of MHD eigenvalues and associated waves can be
splitted into three groups. Introducing the unit vector n as the direction of propagation of any wave, the
sound speed V; := \/yp/p = /avs (with p = 1) and the Alfvén velocity V4 := |B|/\/p = va (with [B] =1
and p = 1), these three groups are [18]:

o Fast magnetosonic waves:

1
Ne=xCr, Ch= o (V2HVE+ 24 VR - 4V2Vi-0p2).
o Alfvén waves:
M =xcy, CZ=Vib-n).

¢ Slow magnetosonic waves:

1
Ne=xCs, Ch=g(VE+Vi- VVE+V3)2 - 4V2V3(B - n)2).

Since here b := e, Alfvén waves cannot propagate in the perpendicular direction to ej. Indeed, it is well-
known [18] that Alfvén waves propagate mainly along the direction (b := e)) of the ambiant magnetic field.
For a wave propagating in the perpendicular direction to ey, we obtain A5 = (V2 4+V3)V/2 ~ £V, ~ 4V,
whereas /\§ = 0. Note that in dimensionless variables we have /\Ii, = +vb+1, with b = ay. Indeed,
normalizing the velocity to the Alfvén velocity va and taking 8 = 1 in A = +vav/Bay + 1, we obtain the
desired result. In order to understand now the nature of the waves that are filtered out from the singular
part of the linear system (6), we rewrite it in the fast time variable t to obtain

8tQ+VL'UL:0, 8tful+Vl(bg+B”):O, By +V, v, =0.

With U := (o, v1,v2, By), the previous system can be recast as .U + (A10,, + A10:,)U = 0, where the
matrices A; have constant coefficients depending on b. With n; = f(n, n2) a unit vector in the perpendicular
direction, the matrix A := ny A; +ng Az is diagonalizable with the real eigenvalues A\o(.A) = 0 (of multiplicity
two), Ar(A) = vb+1, and A\_(A) = —/b+ 1. Then, the waves associated with the singular part of the
linear system (6) are the transverse (linear) fast magnetosonic waves.

Therefore, here, we aim at filtering out the fast dynamics associated with the perpendicular fast magne-
tosonic waves, and keep the dynamics of waves which propagate at a speed slower than the perpendicular
fast magnetosonic waves Crp =~ v4. Defining the time T, as the time needed by a fast magnetosonic waves
to cross the device in the perpendicular direction, we then have T,v4 = X . Since we want to describe
the dynamics on a time scale longer that T, we set t = T, /¢, with ¢ < 1. This is equivalent to describe
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the dynamics of waves which propagate with velocity slower than Cr (or v4). Hence, we have v = cva,
ea = ¢, and ey = €/(v/78) ~ €. Moreover, we suppose a strong anisotropy between the perpendicular and
parallel direction, that is X, /X = €. In other words the dimensional gradient Vy becomes the anisotropic
dimensionless gradient V. of (2). In addition, we suppose the presence of a strong constant background
magnetic field in the parallel direction (B = e + €B¢). Since ¢ is present in the resulting dimensionless
system, the velocity field v and the density p will depend on ¢, hence we set v = v® and p = p°. Finally, it
remains to choose some scalings with respect to the small parameter ¢ for the dimensionless viscosities and
resistivities. We choose {1 = eu, pi = pj/e, A = X}, where viscosities {uf , u§, A\°} satisfy (10), and
{nL = en7, mi = nj/e}, where resistivities {n3 , 1} satisfy (11).

All the above considerations allow us to pass from the dimensional MHD equations (39) to the dimen-
sionless ones (3).

3.2. Nonlinear optics framework

Conducting fluids are traversed by electromagnetic waves, which can interact with the medium in various
ways. These phenomena can be modeled by adjusting the dimensionless parameters to account for special
regimes, and by incorporating (high frequency) oscillating source terms or equivalently (high frequency)
oscillating initial data into the equations. Here, we choose viscosities and resistivities which accommodate
the propagation of oscillating waves with wavelengths approximately e. For this, we impose viscosities
{ur =e%us, wi = ps, A = 2X°}, where dimensionless viscosities {u , 5, A°} satisfy (10), and resistivities
{1 = %05, nu =77}, where dimensionless resistivities {7, 1§ } satisfy (11). We then look for solution like

ol (e i) A\ (e
v/v (t,XJ_,X“) = € Us(t,Eilxl,X”) = 0 +e V& (t,a_ XJ_,X”)
B/B 1+€B8(t75_1XJ_,XH) 1 B
n° o
= 0 +¢€ v°® (t,JJL,$||), (40)
1 B*

where ¢ = (p® — p%)/e. Plugging (40) into (39) leads to (3). Therefore, we investigate the dynamics of a
magnetized plasma near a fixed large constant magnetic field where anisotropic oscillations in space can
develop. The first term of the right-hand side of (40), which is of order of unity, is a stationary solution of
(39). The second term of the right-hand side of (40) is the perturbation, which is of small amplitude (¢ < 1)
and of high frequency (67! > 1). Such a framework belongs to the so called weakly nonlinear geometric
optics regim.

4. Asymptotic analysis in a periodic domain

This section is devoted to the proof of Theorem 1. First, we obtain some weak compactness properties for
the sequences, ¢°, Bf, v°, p°v°, and Q, v7, and strong ones for the sequences p°, B, P, v7, P, (p°v9) and
(p*v® —v®). Using these compactness results, we justify the passage to the limit, in order, in the equations
of p%, p*vy, pv§, BS, and Bf (or equivalently o). For the equations of p°v5, we use the unitary group
method, while for the equations of p®vj, and Bj, we use some particular cancellations and a compactness
argument (Lemma 14 of Appendix A).

4.1. Compactness of p¢ and o°

Here, we aim at proving the following lemma.
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Lemma 1. Assume v > 3/2. The sequences p® and o° := (p° — p%)/e satisfy the following properties.

p° —1 in LS, (Ry; L7(T3))—strong,
o — o in LS(Ry; L7(T?)—weak*, #=min{2,~}.

Proof. Let us start with p°. From energy inequality (30)-(33) with the pressure term II;, we already know
that II;(p°) is bounded in L{°

loc

have p° — 1 in L2 (Ry; L7 (T?)) —weak—+. In addition, since p¥ = p§ — 1 as € — 0, for ¢ small enough we

have p? € (1/2,3/2). Then, using Lemma 11, we claim that there exists n = ns = n(vy,0) > 0, such that for
|z — p%] > & and x > 0, we have

(R ; LY(T?)), uniformly with respect to e. Thus, by weak compactness, we

2 =y 4+ (y = DT > sl — 7| (41)

Indeed, using Lemma 11 with & = p® € (1/2,3/2), we obtain, n = v3, for 1 < 7 < 2, and 3/2 < R < x;
n =062y, for 1 < <2 and z < R; and n = vy sup,cqs |z — pf[>~7 > 0, for v > 2, and = > 0. Therefore,
using (41), inequality (a/2+b/2)7 < (a” 4+ b7)/2 (by convexity of x — 27), and energy inequality (30)-(33)
with the pressure term Il,, we obtain

sup/dm|p€—1|”’ §27*1|T3HF—1‘7—|—2A’71 sup{ / dzr + / dx}|p€—p5|7
>0 >0
13 |o# —%| <5 |o—p|>6
2
< zw—l{mw— 17+ |07 + 6170—5}
5

In the previous estimate, taking first € — 0, and then § — 0, lead to the convergence of p° as stated in
Lemma 1. We continue with p° := (p° — p¢)/e. Using Lemma 11 with z = p® € (1/2,3/2) and = = p®, and
using energy inequality (30)-(33) with the pressure term Ilo, there exists a constant C' independent of &
such that

®y;L2(19) < C,

loc

if ¥<2, VRE (3,+00), ll0"Lpecrllrg,@yir2msy < O, 10" Loz rllie y 0 (rsy < O/ 71

loc loc

{if v7>2, [|0°|lLee )

Using this last estimate, ¢° is bounded, uniformly with respect to e, in L (R ; L*(T?)), with x = min{2,v}.

loc
Hence, weak compactness leads to the convergence of ¢° stated in Lemma 1. O

4.2. Compactness of B¢

Here, we aim at proving the following lemma.
Lemma 2. The sequence B¢ satisfies the following properties.

B — B in LY (Ry; L% N HY(T?))—weak N L2 (Ry; L*(T?)) — weak—*
V.-B°—V, B, =0 in L} (Ry;L*T?))—weak,

loc

BT — B, in L} .(Ry;L*(T3))—strong, 1<r < 4oo.

Proof. The first limit of Lemma 2, comes on the one hand from weak compactness, and on the other
hand from energy inequality (30)-(33) with the pressure term I, and the continuous Sobolev embeddings
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HY(T3) — L°(T3), which implies that B¢ is bounded in L _(Ry; H' N L5(T?3)) and in L°

loc loc(R-i-; L? (TS))a
uniformly with respect to e.

We continue with the second assertion. Since B¢ is uniformly bounded in LZ (R ; H(T?)) and V, -Bf =
—e0y Bj in D', we obtain |V - B (|12 &, .r2(r3)) < €llOnBjll L2, (m,;L2(r3)) < Coe. On the one hand V| - B
is bounded in L (R;L?(T?)) and goes to V| - By € D'. On the other hand, it must vanish as ¢ — 0.
Hence, the second line.

For the third assertion, we apply Lemma 13 of Appendix A with By = H(T?), B = L3(T3), B, =
H=Y(T?), p=r, and ¢ = co. To this end, we have to check the corresponding hypotheses. Below (and after

when there is no possible ambiguity), bounded means “uniformly bounded with respect to &”.

o From energy inequality (30)-(33) and the continuous Sobolev embedding H'(T?) < L5(T?), we obtain
that B¢ is bounded in L{S (Ry; L2(T?)) N L2 (Ry; H' N LS(T3)).

« Obviously, BS is bounded in LS (Ry; L2(T3)) N L (Ry; HY(T?)).

o The final step is to estimate 9; B . We can exploit equation (1) to express this time derivative. Observe
that, as can be seen at the level of (23), there is no singular term in €. The Laplacian parts are clearly

bounded in L

L J(Ry; H71(T3)). Let us consider the products of components of B® and v¢. We refer
to (the proof of) Lemma 3 which guarantees that v® is bounded in L (Ry; H' N L5(T?)). Hence, by
Holder inequality, these products are bounded in L (R, ; L3(T?)). Since L3(T?) — L?(T3), after spatial

loc

derivation, we find as required a bound in L (Ry; H=(T?)) for 9;B5. O

loc

4.8. Compactness of v¢ and p*v®

Here we aim at proving the following lemma.

Lemma 3. Assume v > 3/2. Let s := max{1/2,3/y — 1} € [1/2,1). The sequences v¢ and pv® satisfy the
following properties.

&€

v* — v in LE_ (Ry; LS N HY(T?))—weak,
V.o —V, v, =0 in L} _(Ry; L*(T?))—weak,

loc
PivS —Piv; and Qv — Qv =0 in L2 (Ry; L5 N HY(T?))—weak,
Pivi — Piv, =vy in L& (Ry;LP N HS(T?))—strong, 1<p<6, 0<s<1,
13 6
1}, q .

P — v in L3 (Ry; LN H °(T?))—weak, Vo>s:= max{i,
Y

P —v° — 0 in L& (Ry; LY(T3))—strong, q=67/(6+7),

loc

P, (p°v5) — Prov; =vy in LE (Ry; LY(T?))—strong, ¢ =67/(6+7).

Proof. We start with the first statement of Lemma 3. From energy inequality (30)-(33) with the pres-

sure term Ilp, we obtain that v° is bounded in L2 (Ry; H'(T?)). Let us show that v® is bounded in
L2

loc

(Ry; HY(T3)). From Poincaré-Wirtinger inequality and Holder inequality, it is easy to show that

I- ||?11(1r3) - |6|2 +- ||311(T3)7 with U = |']1‘3|*1 /dsc .
']1‘3

There remains to control the mean value v®. Using Hoélder inequality, the embedding LS(T3)
L/ G=1(T3) for v > 3/2, the continuous embedding H}(T?) < LS(T3) (with H}(T?) the set of zero-
average functions in H'(T?)), we obtain for any 7' > 0,
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T
/dt/dxp o — e /dt||P oo 10° =T a0y
0
°r ) (43)
< [t ooy o7 = o
0
< Hp HLf’(?C(R+7L7(T3))||vv ||L120C(R+;L2(T3)) <(C<o0o.

Using inequality b?/2 < (a — b)? + a? and the mass conservation law, we obtain

[z @) = lgill e () <2 [ do gt =7 4 2 [ do (o)

T3 T3 T3

With (43), this implies (uniformly in €)

( ) <27~ L ||p0||L1(']I‘3))(C +7T ”\/EUEH%OO([&T];LQ(T?’))) <C.

This information combined with the bound of v* in L2 (R, ; H*(T%)) indicates that v® is bounded in
12, (R, HY(T%)).

We continue with the second statement. To this end, we look at the mass conservation law (20). Since p* —
1in L2 (Ry; LY (T3))—strong (Lemma 1), v© — v in L2 (R4 ; L°(T?))—weak and p§ — 1 in L7 (T?)—strong
(from (27) and by following the proof of Lemma 1), it is easy to pass to the limit in the distributional sense
in the linear terms. For the nonlinear term, we write p®v® = (p° — 1) v® + v°. Since 1/ + 1/6 < 1 (recall
that v > 3/2), the first term vanishes strongly in L?(R; L6/(6+7)(T?)). At the limit, we recover for any

test function ¢ that

/dm<p(0)+/dt/dm(3t90+vL-Vlgo)z/dt/da:vL-VL@:O,
Q 0o 0 0 Q

which means that V- v, =0in D'(Ry x T?).

The third assertion of Lemma 3 is a consequence of the first and second statements of Lemma 3, of the
Helmhotz-Hodge decomposition v =P v5 +Q, v] and of the (weak) continuity properties of P, and Q.

The fourth assertion exploits some Gagliardo—Nirenberg interpolation inequalities together with delicate
equicontinuity properties in time that require to already control the product p® v®. The proof is postponed
to a later stage.

We pursue with the proof of fifth statement of Lemma 3. On the one hand, from the uniform bounds
v¢ € LE (Ry; LO(T3)) and p° € LS. (Ry; LY(T?)), and on the other hand, from Holder inequality, we obtain

e L (Ry; L5/ (6+7)(T3)) uniformly with respect to e, which gives, by weak compactness, the weak

convergence of this sequence in this space. Moreover, from the first assertion of Lemma 1 and 3, the product of
p° and v° weakly converges to the limit point v in LE (R ; L9(T?))—weak with 1/¢ = 1/v+41/6. The Sobolev
embedding H?(T3) < L9 (T?), with 1/¢' =1 —1/q = (57 — 6)/(67) and s > max{0,3/y — 1}, implies by
duality that LI(T3) — H~*(T?). Without loss of generality and in order to avoid further the multiplication
of regularity indices we restrict s such that s > max{1/2,3/y—1}. We then have p*v° € L _(R;; H*(T?)).
We conclude by using the Sobolev embedding H°(T?) < H*(T?) for o > s, and duality.

From Hoélder inequality, we have

loc

®ysLar)) < 0% = Ul ®psrepllo®lez @pzo@sy,  1/g=1/7+1/6.

[p*v® —v ||L2

loc

Then, exploiting the first assertion of Lemmas 1 and 3, we obtain the sixth statement of Lemma 3.
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We can now come back to the L

For this, we use Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three

(Ry; LP(T3))—strong convergence in the fourth assertion of Lemma 3.

points, are satisfied. 1) From the fifth statement of Lemma 3, the selfadjointness of P, for the scalar product
of L%(Q;R?), and the continuity of P, in L¥(Q;R?), for 1 < a < oo, we obtain P (p*v5) = Pivy = vy
in L2 _(Ry; L6/ 6+7)(T3))~weak. 2) The bound P v5 € L2 (R,;L5(T%)) and Lemma 4.3 in [7] implies
[PLof(t,-+h) = Prog(t,)lles

10(‘

Leray projector P to equation (21) for pvS , we obtain

(R,;L6(13)) — 0, as [h| — 0, uniformly with respect to €. 3) Applying the

8t(IP’l(p5vj)) =—-V.- IP’L(pevj & 'UE) + WP, B* — Ve ]P)L(Bi X BE) + ,UfiALPLUi + /LﬁA”]P)L’Ui . (44)

Using the bounds pf[v¢|? € LS (Ry; LY(T3)), v° € L (Ry; HY(T?)), and B® € LS (Ry; L*(T3)), and
the following properties of the projector P, P, (H*(T3)) — H(T?), with o > 0, and P (L' (T3)) —
W=3L(T?), with § > 0, we obtain from (44), 9,(P, (p°v5)) € L& (Ry;(W—o=1l 4 H=1 4 [2)(T?)) —
Li (Ry; W=9—L1(T?)). Gathering points 1) to 3), we can apply Lemma 14 of Appendix A with g° = p°v5,
he=Pivi,pr=qa=21/p+1/a1=1),p2=67/(6+7),and g2 =6 (1/p2 + 1 /g2 = 1/y+1/3 < 1, for
v > 3/2), to deduce that

P, (pv7) Piog — |Pivi = v in D(RL xT3). (45)

This limit leads to the strong convergence of P v§ to v, in LZ (R ; L?(T?)). Indeed, using (45) and Holder
inequality, we obtain for any T > 0,

lim sup I Lo 7 (e iz2qroy) — IProLlze, myizeroy)

T T
= limsup/dt/dac (IPLvl [ =Py (pv]) -Pro]) = limsup/dt/deJ_vj_ -0 (1= p%)
3

e—0 e—0
0 T3 0

< hmsupHp = Ulpes ry;nv oy VL1172

loc

(Ry;L20(T3)) >

with 1/y+1/6 = 1. Since v > 3/2, we obtain 26 < 6. Therefore, using the first statement of Lemmas 1 and 3,
the right-hand side of the previous inequality vanishes, which leads to limsup,_,q [[PLv3 |22 (. r2(13)) <

(R ;L2(T3)) Z 1iminf5_>0 ||PLUJ_HL2 (R ;L2(T3)) and to ]P’ij_ — PLUL =V in L%oc(R-‘r; Lz(Td))f

loc

IPLoL]p
strong, by Proposition 3.32 in [7]. This strong convergence in L? allows to prove the fourth statement of
Lemma 3 by using some interpolation inequalities. Indeed, using Gagliardo—Nirenberg inequality in space
and Cauchy-Schwarz inequality in time, we obtain

1 /2 (46)

IPLv] —villpe (Ry;LP1(T3)) ~ SIPLvi — MH

loc

SR HY Ts))HPLUl ULHL2 (R ;LPo(T3)) >

with 1/p1 = 1/12 4+ 1/(2po) and ||P v — UL”LIQOC(R*_;Hl(T?,)) < oo. Iterating inequality (46), we obtain a
sequence of indices p,, such that 1/p,+1 = 1/12+1/(2p,,), with po = 2, hence its limit p,, = 6. This justifies
the first part (strong convergence in LP) of the fourth statement of Lemma 3. For the second part of this
statement, again, using Gagliardo—Nirenberg inequality in space (with not necessarily integers [8,9]) and
Cauchy-Schwarz inequality in time, we obtain

IPLv] —villee (

loc

(Ry;H1(T3)) SIPLv] — ULH SRy HL Ts))HPﬂu ULHL2 (R H#0(T3)) (47)

with 1 =1/2+ s9/2 and [P v] — v ]2

loc

of indices s, such that s,11 = 1/2 + s,,/2, with sg = 0, hence its limit soc = 1. This justifies the second
part (strong convergence in H?®) of the fourth statement of Lemma 3.

(R, ;H1(T3)) < 00. Iterating inequality (47), we obtain a sequence
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We finish with the proof the seventh statement. By triangular inequality and continuity of P, in
L*(;R?), for 1 < a < 00, we obtain

IPL(p"0% —vi)llrs

2 ®ysza(re) < IPLvi —villze wyipaers)) + 10707 — 0Ll @yipacrs))

loc

Using the fourth and sixth assertions of Lemma 3, and since 6/5 < ¢ < 6 (because 1/¢q = 1/v+ 1/6, and
3/2 < v < 00) this inequality allows to conclude. O

4.4. Passage to the limit in the equation for B

Here, we justify the passage to the limit in (23) for BS. Let us start with the initial condition term.
From the discussion about the properties of sequences of initial conditions in Section 2.3 (in particular the
uniform bound (27) and the resulting convergences), we can pass to the limit, in the distributional sense,
in the initial condition term of (23) to obtain the limit initial condition By, . Next, using on the one hand
the third statement of Lemma 2, and on the other hand the first and the second statements of Lemma 3,
we can pass to the limit, in the distributional sense, in all linear and nonlinear terms of equations (23) and
(25) to obtain the first equation of (12) and equation (15) in the sense of distributions.

.5. Passage to the limit in the equation for pfv5
4 g q p vy

Here, we justify the passage to the limit in equation (21) for p°v9, in several steps. We start by recalling
some basic tools. With  being either T3 or R3, we introduce the linear differential operator

0 CEVL'
L= — 4
(tvL 0 )’ (48)

defined on Dj(Q;R) x D'(%;R?), where Dy(%;R) = {¢ € D'(;R) | [, dx¢ = 0}, and such that LU =
— "V - @, IV ¢), with U = (¢, ®) € D) (4 R) x D' (;R?). Here ¢ := b° + 1/pF, with b° := b(p?)7 L.
Since for e small enough p® € (1/2,3/2), there exist constants 0 < ¢ < ¢ < oo, such that ¢ < ¢® < ¢, and
¢ —>c=14+b=1+ay.

We claim that £ generates a one-parameter group of isometry {S(7) := exp(7L); 7 € R}, from H*(Q; R) x
H*(Q;R?) into itself with the norm |||U|||12qa(ﬂ) = [|0l3a ) + 12| Fa (g for all a € R. Indeed, this comes
from the fact that the operator £ is skew-adjoint for the scalar product (-, -) of L2(£2;R) x L?(£2; R?), defined
by (U, V) = (¢, 9) 2(0)+¢ (@, ¥) [2(q), where U = (¢, '®), V = *(¢,"¥), and the notation (-, ) £2(q) stands
for the standard scalar product in L?(Q) for scalar or vector valued functions. This isometry group can also
be directly verified from the H*-energy estimates of the solutions U(7) = S§(7) Uy, satisfying the equation
0, U(r) = LU(7), i.e.,

b+ EV, - D=0, 0P+V, 6=0. (49)
Indeed, we first set A = (I— A)Y/2 and recall that H*(Q) = A~*L?(Q). Applying A® to equations (49), and
taking the L?(Q) scalar product of the result with A% (resp. ¢°A®®) for the first (resp. second) equation

of (49), we obtain

d d [e3% @ d [e% (4 [e%
U0y = o (AT AU) = — (AT () + A" ®][72q)

_ / do ¢ (AGV | - AD + A®® -V Ag) = 0.
Q
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In order to understand some properties of the group S(7), we denote by Si(7) € R and Sz(7) € R? the
components of (7). Observe that [, dxS(7)U and P Sy(7) U are independent of 7 € R. In particular
S(7) U is independent of 7, if P, ® =0 (i.e., V) - ® = 0) and if ¢ is constant. From (49) the operator L is
equivalent to the transverse wave operator. Indeed, the equation 0, U = L U is equivalent to the scalar wave
equations (02 —c*A | )¢ = 0, and (02—c*A | )¢ = 0, where we have used the Helmholtz—Hodge decomposition
®=P,P+V,p, with fQ dro =0,V7 € R, and observing that P, ® is a constant determined by the initial
conditions (since 9;P; ® = 0 from the second equation of (49)).

The key to justify the limit of the equation for p*v7, is to construct an approximate solution to the MHD
equations (20)-(25), which allows us to pass to the limit in both singular terms and nonlinear terms. Such
a construction is given by the following lemma.

Lemma 4. Let us define U® := (¢, '®°), where ¢° := b°0*+ Bj, and ®° := Q  (p*v), with o := (p*—p?) /e,
and b° := b(p¥)Y~L. Let s be the same positive real number as in Lemma 3, i.e., 5 := max{1/2,3/y — 1} €
[1/2,1). Then,

1. There exist functions U = '(4,"W¥) € L (Ry;L?(T3R?)), and R® € L} (Ry; H (T3, R3)), with
s <o < (5/2)", such that

Us =S8(t/e)Ud + R, with R® — 0 in L3 (Ry; H °(T?))—strong. (50)

2. There exists a function my = ATV, - Qrup. € L2(Ty; HY(T?)), as well as a function m1; €
L}, (Ry; HT(T%R)), with v > (3) ", such that

¢ Je — So(t) @ Mo + M in H YRy ; H"(T?))—weak. (51)
3. The limit point (By, o) satisfies the relation By + bo = 0, for a.e. (t,x) €]0, +oo[xT3.

Proof. On the one hand, applying the projector Q to the perpendicular component of the second equation
of (3) (the one for p°v9) to form an equation for ®° := Q (p°v5 ) and on the other hand combining the
first equation of (3) (the one for p®) and the parallel component of the second equation of (3) (the one for
Bf) to form an equation for ¢¢ := b°p° + Bf, we obtain the following equation for U® := (¢°, ! ®*),

1
U — _LU" = F*, (52)

where

Ff == 60 (p7vf) + (p°) 7'V - Qu(o®v]) — BjVe - v°

e (F) B — (07 - Vo) Bf + (BT - Vo)uf + (L AL + 77 A1) B, -
F5) | F5 =—QuVe- (50 ®0%) — (v = DVLIL(p%) — 2V (1B + 01Qu BT

F QLY. (BS @ BY) + pi Vi (Ve -v5) + i AjQuvs + AV (Ve - ).

We start with point 1 of Lemma 4. We aim at showing (50) in two steps. The first step concerns the
existence of a filtered profile U = (¢, '), while the second one establishes its regularity in L?.

Step 1. Here, we show that the filtered solution *(1°,'W¢) = U¢ := S(—t/)U* is relatively compact in
(Ry; H=7(T3)) for o > s. For this, we first show uniform bounds for U*¢ in suitable functional spaces.
Second, we use the fact that the group S is an isometry in H* (a € R) in order to obtain similar bounds on
(Uc, O, U*). Next, we invoke an Aubin-Lions theorem to obtain compactness of the sequence U¢ and the
existence of the filtered profile U. Finally, using the isometry S and the averaged profile U, we construct

L2

loc
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an approximation to U¢, with an error estimate which converges strongly as indicated in (50). In this way,
we bypass the singularity in 1/¢ in (52).

Recall that x = min{2,~}. Since ¢° € LS (R4; L*(T?)) and Bf € LS (R ; L%(T?)), we can assert that
¢° € L (Ry; (L* + L?)(T3)). From Sobolev embeddings and a duality argument, we obtain L3/2(T?) —
H~=%(T?), with o > 1/2. Since x > 3/2, then L*(T3) — H~%(T3) and (L* + L?)(T?) — H~%(T3).
Since & can be chosen such that o < s, then (L% + L?)(T3) — H~*(T?) and ¢° € L (Ry; H*(T3)) —
L (Ry; H7*(T?)). From the fifth statement of Lemma 3, p*v5 € L (R4; H*(T?)). Since Q. (resp. S)
is a continuous map (resp. an isometry) in H®, with a € R, then U° € L _(Ry; H*(T?)).

We are now going to obtain a bound for 9;U¢. Using (52), a straightforward computation shows that
0, U° = S(—t/e)F=. Let us show that F© € L (Ry; H="(T?)) for r > 5/2+ 4, and any § > 0. We will then
obtain 9, U° € L (Ry; H~"(T?3)), because S is an unitary group in H®, with a € R.

Let us start with Ff. First, observe that BfV. - v° 4 (v° - V)Bj — (B - V)v§ = [V x (B§ x v%)]) €
(R ; W—13/2(T3)) by using Holder inequality and the energy estimate. Obviously, from the energy
estimate, the last two diffusive terms of F¥ belong to L2 (Ry; H~(T?)). Using U® € L (Ry; H*(T?)),
the first term of Ff is in L (Ry; H~*"1(T?)). It remains to bound the second term of Ff. Using Holder
inequality, we obtain p°v¢ € LIOC(RJr;Lq(TB)) with 1/qg = 1/k + 1/6. Observe that q € (6/5,3/2] since
K € (3/2,2]. The Sobolev embedding H?(T3) — L9 (T3), with 1/q’ = 1 —1/q = (5x — 6)/(6x) and
§ > 3/k —1 € [1/2,1), implies by duality that LI(T?) — H—%(T3). Since 3/y — 1 > 3/k — 1, we can
choose 5 = 5. Therefore, the second term of Ff is bounded in L (Ry; H *~1(T?)), and we obtain Ff €
12, (R o (H*1 4 W132 4 H1)(T9)) o 12

loc

L2

loc

(Ry; H=571(T?)), where the previous injection results from
Sobolev embeddings.

We continue with an estimate for F§. From the continuous embedding Q ; (L*(T?)) < W=%!(T?) which
works for all § > 0, and the energy estimate, the first and fifth terms of F5 are uniformly bounded in
L3 (R ; W—1=%1(T3)). From the energy estimate, the second and third terms of 5 are uniformly bounded
in L2 _(Ry; W=11(T3)). From the following continuous embedding, Vo > 0, Q (H*(T3)) — H*(T?), and
the energy estimate, the fourth term of F§ is uniformly bounded in L% (R.; L?(T?)). Obviously, from the
2 (Ry; H7Y(T?3)). Therefore, we obtain

(Ry; H(T3)), with » > 5/2 4 4, by using

energy estimate, the last three diffusive terms of F5 belong to L
F5 € L (Rys (Wm0t Wbt 4 B 4 L2)(T%)) < L,
Sobolev embeddings.

Now, using Lemma 13 of Appendix A, with 8o = H%(T?), 8 = H°(T?), B, = H "(T®),s <o <,
and p = ¢ = 2, we obtain that U is compact in L _(Ry; H=°(T?)). We deduce that there exists U =

ty,'W) € LE (Ry; H=7(T3)) such that U° converges strongly to U in L (R4; H=(T?)). Since P, ¥¢ =0
(resp. fT3 dxy® =0), Ve > 0, then P, ¥ = 0 (resp. fT3 dx 1 = 0). Since the group S is an isometry in H®
(ov € R), we finally obtain (50).

Step 2. To show that ¢ € L (R4; L*(T% R?)), we use the auxiliary variable U = 1(¢%,'Q 05 ). We
first establish two points which allow us to deal with a truncated version of U® instead of U® itself.

1) From the first statement of Lemma 1 and estimates (42) (which imply, via the De la Vallée Poussin
criterion [16], that o° is spatially uniformly integrable in L3/2 (T3), uniformly in time on any compact time
®y:Lr(13)) — 0, as € = 0, where R = +o00 and £ = 2, if v > 2; and
where R € (3/2,+00) with R fixed, and x = v, if v < 2. Moreover, since B¢ is 2-uniformly integrable in

interval), we obtain ||0® — 01 <Rl e (

loc

space-time, we obtain, from the first statement of Lemma 1, | Bf — Bj1,:<g| 12

loc

(Ry;L2(T3)) —0,as e =0,
for any R € (1,400]. Indeed, the 2-uniform integrability comes from the Gagliardo—Nirenberg interpola-
tion inequality [|B®| pio/sm, x13) < ||BE||LOO(]R+ 2 T3))HVB HLQ(RJr L2(msy) < 0 (from uniform bounds of
Lemma 2) and the De la Vallée Poussin criterion.

2) From the sixth statement of Lemma 3, we obtain [p*v] — v |12
1/g=1/y+1/6.

We now set UR (QSR,tQLvl) where ¢%, := (b°¢° + Bj)1,:<g. Then, from Step 1, and the points 1)
to 2) of Step 2, we obtain S(— t/s)UR — U in L (Ry; H=°(T3))—strong. Indeed, we have

(Ry;La(T3)) — 07 as € — 0, for
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S(=t/e)U5 = U+ S(=t/2) (9% — ¢°], "QuI(1 = p*)vi]) + S(—t/)R". (54)

Since the group S is an isometry in H* (« € R), from the points 1) to 2) of Step 2, the second term of the
right-hand side of (54) vanishes as ¢ — 0 in L2 (Ry; (L® + L?)(T3;R) x L(T3; R?))—strong, and thus in
L2 (Ry; H=7(T3))—strong since (L* + L?)(T3) < H~*(T3) with £ > 3/2, and LY(T?) — H~°(T3) with
1/q¢ =1/v+1/6, and where («, 0) can be chosen such that 1/2 < & < s < 0 < ¢. From (50), the third term
of the right-hand side of (54) vanishes as ¢ — 0 in L (R ; H~(T3))—strong.

Finally, the first assertions of Lemma 2 and Lemma 3, and inequality (42) show that U 5 is bounded in
L2 (Ry; L3(T3;R3)), uniformly with respect to e. Since the group S is an isometry in H* (a € R), we
deduce that U € L _(Ry; L?(T3;R?)), which ends the proof of the first point of Lemma 4.

We now turn to the proof of the point 2 of Lemma 4. Using the equation (52) on the component ®¢, we

can see that ¢ /e satisfies, Voo, € H}(Ry; H™(T?;R?)), with » > 0 large enough (specified further),

[ [ae 29001 == [ar@uisius) - v.0) - [ [ ar(F - 1i Qo

Ry T3 T3 Ry T3

/dt/dva (@L@twL—/dt/dang v, = T5+17 + 15 +T5 . (55)
R4 R4

From properties of initial conditions (see Section 2.3) we have Q, (pfv5,) — Qiuor = Quups in
L2/0+)(T3) —weak, and ug; = voy € L?*(T®). Defining 7y := A['V) - Qruor € L*(Ty; HY(T?)),
we then have V7 = Q uo, € L*(T?). From Hélder inequality, we obtain |T5| < [|p§v§, [l 227/ (1s)
%1 (0)[| L2+/v~1) (1sy. This and continuous Sobolev embeddings, imply that there exists a constant Co (uni-
form in ¢) such that |T5| < ColltLllmr (e, a7 (rs)), with r > (5/2). From Hélder inequality we obtain
ITE] < [lp° = Ulrgs sz epllvLllez @y;romo) 10 QL Ll p2(m, Lo (13y), With 1/¢" =1 —1/y —1/6. Then
first, from Lemmas 1 and 3, we obtain I — 0, as ¢ — 0. Second, using continuous Sobolev embed-
dings, there exists a constant C; (uniform in ) such that [T7| < Cil|¢L|| g1 (r, ;57 (13)), With r > (5/2)%.
Using Lemma 3 (in particular Q v, = 0), we obtain 7§ — 0, as ¢ — 0. From Holder inequality, we ob-
tain |T5] < [lvi [l

loc

(Ry;02(13)) |0 Ll L2 (R, ;L2 (T3)), Which implies, together with Lemma 3 and continuous
Sobolev embeddings, that there exists a constant Ca (uniform in €) such that 75| < Col|Y L[| g1, ;57 (12)),
with r > (5/2)T. From the Step 1 of this proof, we know that F5 € LIOC(RJ” —r(T3)), for r > 5/2 + 4,
and any § > 0. Since V| x F§ = 0 in D'(R% x T?), there exists f§ = AT'V, - F§ € L2 (Ry; H"(T?))
(uniformly in €) such that F§ = V| f5. Therefore, there exists a function 7y € L2 (Ry; H"(T?)) such that
5 — m in LE (Ry; H "(T3))—weak. Moreover, we deduce that there exists a constant Cs (uniform in ¢)
such that |T5| < C3l|vL || 1y ;e (1sy), with 7 > (5/2)". In summary, we have shown that there exists a
constant C := 3, 3 C;, uniform in ¢, such that for r > (5/2)7,

’/dt/dl'VJ_ i | = ’/dt/d.’L’—VL (s

which means that V| (¢°/¢) and a fortiori ¢°/e belong to H~!(R,; H~"(T?)), uniformly in e. Moreover,
we have proved that

< CllYolla vy (3)) >

/dt/dx—m o —>/dt/dmm N +/da:7rom ¥1(0).

R4
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These two properties establish the point 2 of Lemma 4. Using (51), and Lemmas 1 and 2, we obtain that
¢° = ¢ =bo+ B =0in D'(R% x T?), and bo + By = 0 in LS, (Ry; L®(T?)), with £ > 3/2, which justify

the point 3 of Lemma 4. O

We are now able to justify the passage to the limit in equation (21) for p°vg . Let us start with the initial
condition term. From the discussion about the properties of sequences of initial conditions in Section 2.3
(in particular the uniform bound (27) and the resulting convergences), we can pass to the limit, in the
distributional sense, in the initial condition term of (21) to obtain the limit point ug; = vo1L = Pjugy +
Q1 up.. Using (51) in equation (21), we observe that the term —V 71y = —Q, up, (coming from the weak
limit of ¢°/e) cancels the irrotational par Q) ug, of the previous limit point ug,, so that the limit initial
condition is simply P ug; = P, vg,. This is consistent with the fact that in the limit equation the test
function ¢, can be chosen divergence-free, i.e., P, ¢, = 1, . Moreover, according to (6), the two conditions
Vi-vpr =0 (or Vi -ugy =0, since ug; = vp,) and By + bgg = 0 are related to a preparation of the
initial data to avoid fast time oscillations. Since the limit initial condition P ug, comes naturally without
any preparation, then in our framework, we can deal with general data satisfying V| -ug; =V -vg1 #Z 0.

We next deal with the linear terms of (21). Using weak convergence of v§ (resp. B¢) yielded by the
first statement of Lemma 3 (resp. Lemma 2) we can pass to the limit, in the distributional sense, in all
linear diffusive terms (resp. the linear advection term B - 9y¢ 1) of (21). Using weak convergence for B¢
and strong convergence for B, which are supplied by Lemma 2, we can pass to the limit in the quadratic
nonlinear term Bf ® B® : D1 to obtain the term B, ® By : D11, . Using the identity I, =P, +Q,,
for the term involving time derivative in (21), we obtain, V¢, € € (R, x T3;R?),

//dccpsvi_~8t¢1_:—Tf—T§+/dt/deF’J_vj_~8tz/u_, (56)
T3

R, T3 R,

where the terms 75 and 75 are the same as in (55). For the same reasons as the ones invoked in the proof
of the point 2 of Lemma 4, 7§ and T5 vanish as € — 0. Therefore, using (56) and Lemma 2 (in particular
P v, = vy), we obtain that 9,(p°v]) — dv1 in D'(R% x T?). Now in equation (21), we simultaneously
deal with the magnetic pressure term |B¢|?/2, the singular fluid pressure term p°/e? (with p* = a(p®)?),
and the singular magnetic term Bf /e. Setting p® = p°/e? + Bf /e + |B%|?/2, this term can be rewritten as
pe = ¢ Je+a(pf)? /e? 475, with 5 = (y—1)IIa(p%)+|B%|?/2. In p%, the constant term a(p?)? /e? is irrelevant
because it disappears by spatial integration in (21). From the point 2 of Lemma 4, we obtain ¢°/e — m
in D'(R% x T?). In fact, from (51) we have ¢f/e — do(t) ® Mo + my in H~*(Ry, H "(T?))—weak, but as
already mentioned above, the term dg(t) ® 7o cancels the irrotational part Q up, of the limit term wug , so
that the limit initial condition is P ug; = Pj vg, . From energy inequality (30)-(33) with the pressure term
Iy, we obtain 75 € L (Ry; LY(T?)), uniformly with respect to e. Then, by weak compactness, there exists

loc

a function my € L2 (Ry; LY(T?)) such that 7§ — 7o in L{S (Ry; L*(T?))—weak—*. Therefore, we obtain

pE — (711 + 712) in D/(Ri X TB)

Remark 1. Even if we have the strong convergence of BS in L2 (Ry;L?*(T?))) and a uniform bound in

L% (Ry; HY(T?)) for B?, we do not have |B¢|*> — |B|? in D’(IR% x T?). The reason of this lack of convergence
comes from the fact that 9; B) is not bounded, uniformly with respect to €, in some suitable functional spaces.
Indeed, equation (24) for Bjj contains a singular term in 1/, which prevents such a boundedness. In other
words, this is fast time oscillations in the parallel direction that prevent time compactness and thus, such

a convergence.

It remains to pass to the limit in the nonlinear term p°v§ ®v° in (21). This is the purpose of the following
lemma.
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Lemma 5. There exists a distribution 3 € D'(R*% x T%), such that
Ve (p01 ®@0°) — V- (v ®v1) + Vimg in D'(RG x T?).

Using Lemma 5, we can complete the justification of the passage to the limit, in the distributional sense,
in equations (21) to obtain the second equation of (16) in the sense of distributions.

Remark 2. In (12) the pressure term 7, which can be seen as a Lagrange multiplier ensuring the constraint
V.1 v, =0, comes from the following three contributions, 711, 7t and 7t3. The pressure term 711 comes from
the singular fluid pressure term and the singular magnetic term. The pressure 715 comes from the non-singular
fluid and magnetic pressure terms. The pressure term 73, which comes from the Reynolds stress tensor,
results from taking into account the resonant interactions of the compressible modes on the incompressible
mode, while the non-resonant interaction terms vanish in the limit by using Riemann-Lebesgue or stationary
phase arguments.

Proof of Lemma 5. Observe first the following decomposition, Vv, € €>° (R, x T3;R?),

/dt/dxp%i@va:Dsq/u_:/dt/dxpavj@)vj:DJ_wL
T3 T3

R+ R+

+€/dt/dxﬂ€vﬁvi~am — 54T
R, T8

Using Holder inequality, we obtain |T§| < ¢||p°|v°|?|| Lo

loc

I (R4 ;L1(T3)) Hau '(/JJ_ ||L1(]R+;Loc (T3))- Therefore, exploit—
ing the energy estimate, we have I's — 0, as ¢ — 0.

To deal with the term I'§, we follow the spirit of the proof of the convergence result in the part IIT of
[34]. For this we consider the following decomposition

5
=V, - (pvi®v])= ZF% =Vi (Pl @PLv] + PL(pv]) @ QroT (58)
i=1

+ (QL[p"vi] - %) ® Quoi + O°® (Quov — ) + 0° @ D7),

where we set @° := Sa(t/e) U. We successively deal with the terms I'§,, for ¢ € {1,...,5}. We start with

51. Using the fourth and fifth assertions of Lemma 3 with s = 0 € [s,1), we obtain I'; = V1 - (v ®v,) in
D'(R% x T?), which gives the first part of the limit in Lemma 5. We continue with the term I'{,. Using the
third and seventh assertions of Lemma 3, since 1/q + 1/6 < 1, we obtain I';, — 0 in D’(R* x T?). For the
term I'§5, we observe that Q) [p°v5 | — ®@° = R§, where the term R§ € R? is the second component of the
error term R¢ = (R5,*R$) involved in equation (50) of Lemma 4. Using (50) with ¢ = 1 and the first or
the third statement of Lemma 3, we obtain T'f; — 0 in D'(R% x T?). We pursue with the term I',. Let @
be a regularization of ®¢ obtained by the following way. Using the fact that €>° is dense in L?, we define
@5 = Sa(t/e) Uy, where U, € €°(Ry x T?) is such that ||Uy — Ull2 @, ;r2(r2y) <7, with 0 <5 < 1. We

loc

consider the decomposition

O ® (Quvi — %) = (05 — ®°) ® (Quvi — @°) + @, ® (QLv] — %) =: Ry, + R, (59)

For the term RY,, using the isometry property of S, there exists a constant C' = C(||U||r2 (v, r2(13)))
such that [R5, [z ®,:1(rs)) < Cn. For the term Rj,, using the isometry of S, we first observe that
©¢ € L} (Ry; H™(T?)), with m > 0, and for all n > 0. Second, we claim that Q v — ®° — 0 in

loc
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L2 (Ry; H=7(T3))—strong, for s < o < (5/2)". Indeed, Q v] — ®° = R§ + Q. ((1 — p°)v7 ), where,
using (50), we have R§ — 0 in L% (Ry; H 9(T3))—strong. From the sixth statement of Lemma 3, the
continuity of Q in L7 with 1/¢ = 1/ + 1/6, and the embedding L4(T?3) < H~°(T?) for o > s (cf. proof
of Lemma 3), we obtain Q_ ((1 — p%)vs) — 0 in L2 (R4; H°(T?))—strong, for all ¢ > o. Therefore, in
the right-hand side of (59), taking first the limit ¢ — 0 and then the limit n — 0, we obtain I'j, — 0
in D'(R% x T3). It remains to show that I'{; — 73 in D'(R% x T?). For this, using Fourier series, we
can compute explicitly the term I'§;. We set U = (d°, 1 D) := (S (t/e) U, 'Sa(t/e)U) = S(t/e)U, with

="(,"W) € LY (Ry; L2(T?)), and such that [, dz ) = 0,and P, ¥ = 0. Since P, ¥ = 0, then ¥ = V 1),
w1th Y=A7'V, Ve L (Ry;L*(Ty; H(T?))). This regularity is deduced from the L? regularity of U.
Similarly, since § and P, commute, we obtain [, dz $® = 0, and P ®° = 0, so that ®° = V| ¢°, with
e = Allvl - ®%. We introduce the Fourier series

=Y e, T =1 ki)t

kez3 kez3

with ¢g(t) = 0, and

I{r bl 2

loc

@2 ze)) T Ikl L el L2, (my 02 (z9)) = No < o0, (60)

where the last estimate comes from the L? regularity of U stated in Lemma 4. We denote by 45 =
L5, D5 = i’k @) the Fourier coefficients of 4° = *(¢°,'®@° = V, ¢°). Inserting the Fourier series
of 4¢ in the linear equation J; U = LI /e, we are led to solve linear second-order ODEs in time for the
Fourier coefficients ¢7,(t) and ¢%(t), with the inital conditions 3, (0) = Uk (t) and 0, U7 (0) = Lk Us(t)/e,
where L, = it(—ck, -, 'k ). Solving these linear ODEs, we obtain for ®¢,

=V,p*=i Z RN {ll)k(t)cos (\/C?UQ@) - mwk(t)sin (ﬁ\kﬂﬁ)}

keZ3

‘We then obtain

D@07 =— > ETL )05 (1) (kL @11) = —(Si(t,x) + S5(t,2)) (61)
k,1€73

with 605 (t) = Pr(t) cos(Vce|kL|t/e) — (Yi(t)/(VcE|kL])) sin(ve|ko|t/e) € LE (Ry), Vk € Z3, and where
S¢ (resp. S5) is the sum of (k,l) on the subset Ay = {(k,l) € Z3 x Z3 ; |k1| # |lL|} (resp. Ax = {(k,]) €
Z3 x 73 ;5 |kyi| = |li|}). We next show that S§ — 0 in D'(R% x T?), and that V, - S5 is a perpendicular
gradient. We first deal with S%. Let o(t,7) = x(t)A(z) € €>°(R4 x T?). Then we obtain,

(85,0) = 1% 5" Ayt (b1 ® 1) /dw% o (Ox(t) = S Hs,, (62)

(k,l)eAr Ry (k,l)eAr

where Ay is the Fourier coefficients of A. Using Cauchy-Scwharz inequality in time, we obtain |H$,| <
T lIxl £oe () i Nial, with die o= (k|| Wrllze, @) + [¥ellcz @) max{1,1/\/c} > [ki|]|0F HLlOC(R+

Using this estimate, bound (60), and Cauchy— Scllcl);varz inequality for one of the infinite sums in (62), w

obtain [(S§, )| < 2NGIT?| ||x| L@, )max{1,1/\/c}* >, czs k|- This last sum converges because, from
the regularity of A, the Fourier coefficients A, decrease enough with respect to k. Then S is summable
in D'(R%. x T3). Now, using the Riemann-Lebesgue theorem and the condition |k | # |l | for (k,1) € Ay,
recombining the oscillating products involving cos and sin, we easily show that 0565 — 0 in L (R )—weak.

Using this vanishing limit and the summability of Sf, we obtain S{ — 0, in D'(R% x T?). We next deal
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with S5. With the same arguments as those used for S5, S5 is summable in D'(R% x T?). It remains to
show that V| - S5 is a perpendicular gradient. Symmetrizing the sum S5 in (k,1) (such that the expression
of the general term remains invariant by exchanging k and [), using the change of variable [ = n — k in S5,
and applying the divergence operator V- to S5, we obtain

V-85 = % et N {(kr®[nL — ki) + (ne — k] @kL)}ni 6565 .

n€zd [ki|=In1L—ki]

To simplify this expression, we first observe that |k | = [n, — k| implies |n,|*> = 2n, - k, . Using this
identity, we obtain (k‘L ® [nL — kl]) + ([TLL — kL} ®kl) = nl(nl . kl) = TLL|TLL‘2/2 so that

V.S = m(i S ncPem S 6 ;,k) — V.m — —V,m in D/(R, xT9).
n€ezs kezZ?

This ends the proof of Lemma 5. O
4.6. Passage to the limit in the equation for p*vy

Here, we justify the passage to the limit in equation (22) for p°v§. Let us start with the initial condition
term. From the discussion about the properties of sequences of initial conditions in Section 2.3 (in particular
the uniform bound (27) and the resulting convergences), we can pass to the limit, in the distributional sense,
in the initial condition term of (22) to obtain the limit initial condition ugy = wvoy (since ug = vg). Next,
using weak convergence of vj yielded by the first statement of Lemma 3, we can pass to the limit, in the
distributional sense, in all linear diffusive terms of (22). Using the same arguments as those used to deal
with (56) and show that 9;(p°vs) — Jvy in D'(RY x T?), we obtain 9;(p°v§) — dyuy in D'(RY x T?).
Regarding the terms eA*v® - V.0 and e(|B¢|/2)0yy, uniform bounds in L (R4 ; L?(T?)) for v and Be,

given by the energy estimate, show that the terms eX°0; V. - v and €8y (|B|/2) vanish in D'(R% x T?3), as
e — 0. For the term B{ ® B¢ : D1y, we consider the following decomposition, V1 € €>°(R; x T3; R),

/dt/dx BS @ B : Doy — /dt/dx BiBS Vi + ¢ / dt |BS 20y . (63)
Ry T8 Ry T8 Ry

Using the uniform bound in L2 (R, ; L?(T?)) for B, given by the energy estimate, the second term of (63)
vanishes as ¢ —+ 0. Using weak convergence of Bj and strong convergence of B, given respectively by the
first and third statements of Lemma 2, we obtain V| - (BfB5) — V- (ByB.) in D'(R%. x T?), which ends
the treatment of the first term of (63). Therefore, we obtain V. - (Bf @ B) = V- (ByB.) in D'(R% x T?).
For the singular fluid pressure term p°/e, we rewrite this term as p®/e = e(y — 1)II2(p®) + b°¢° + a(p®)" /e.
The constant term a(p)7 /e is irrelevant because it disappears by spatial integration in (22). From energy
inequality (30)-(33) with the pressure term Iz, we obtain (v — 1)II3(p°) — 0 in LS, (Ry; L' (T3))—strong.

From the second statement of Lemma 1, we obtain b°¢° — bp in LS, (R ; L"(T?))—weak—x. Therefore, we
obtain 9y (p®/e) — bO1o = —0yBy in D' (R x T3), where for the last equality we have used the point
3 of Lemma 4. It remains to deal with the term pvj ® v® : D.vyy, for which we consider the following

decomposition, V¢ € €°(Ry x T3;R),
/dt/dmpavﬁ ®v®: Dy = /dt/dmpavﬁvi~VJ_1/J|| + E/dt/dxpg\vﬂ?a”w”. (64)
R, T2 R, T3 R, T2

Since from the energy estimate, ||p|v°[?|| e (. ;L1 (13)) is bounded uniformly with respect to ¢, the second

term of (64) vanishes as ¢ — 0. Finally, it remains to deal with the first term of (64). This term is the most

Please cite this article in press as: N. Besse, C. Cheverry, Singular limits of anisotropic weak solutions to compressible
magnetohydrodynamics, J. Math. Pures Appl. (2026), https://doi.org/10.1016/j.matpur.2026.103877

© 0 N o a b~ W N =

AW OW W W W W WWWwWNNRNDNNDNNNRNNDNR B R R e e e
S © ® N & O B ® N R O © ® N o6 R WN RO ©W ® N O U S W N = O

41
42
43
44
45
46
a7
48



© 0 N o aa b~ W N o=

£ A B B D B B DB B WOWWWW W W W WWN N DNDNNDNDNDNDNDNE 2R R R e e R
o N o o b~ W N H O © 00 N OO g P W N FH O VW 0O N G P W N H O VYV o N N WN = O

JID:MATPUR  AID:103877 /FLA [m3L; v1.381] P.28 (1-42)
28 N. Besse, C. Cheverry / J. Math. Pures Appl. sss (sees) sseeee

delicate, because we have only weak compactness for p°vj and v . Indeed, even if P, v§ converge strongly,
Q5 converge weakly (to zero, see Lemma 3). Therefore, to pass to the limit in this term, we will use
Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three points, are satisfied.

1) From the fifth statement of Lemma 3, we obtain p*v§ — vy in L (R, ; L6/ 6+7)(T3))—weak. 2) The
uniform bound v§ € L (Ry; L°(T?)) and Lemma 4.3 in [7] imply [0S (¢, -+h) — v (¢, )| 12

loc

(RysL8(1)) = 0,
as |h| — 0, uniformly with respect to e. 3) From equation (22) for p*v§, we obtain in D'(R% x T?),

6t(pevﬁ) = -V, (pevﬁ ®’UE) + 0 (%p8 + %|BE|2) + V.- (Bﬁ ®BE> +MiAJ_/Uﬁ —&—,uﬁA“Uﬁ +eX 0V 0" . (65)

Using the energy estimate and the preceding bound for the pressure term p®/e (already used in this sec-
tion), we obtain 9;(pfv§) € LS (Ry; (WL + W=LR)(T3)) + LE (Ry; H-Y(T?)) — LL (Ry; W—HY(T?)).
Gathering points 1) to 3), we can apply Lemma 14 of Appendix A with ¢° = p®vj, h* =v], p1 = q1 =2
(1/p1+1/qu = 1), p2 = 67/(6 +7), and g2 = 6 (1/p2 +1/q2 = 1/y+1/3 < 1, for v > 3/2), to obtain
Vi (pvjv]) = Vi (vjvr) in D'(R% x T?). In conclusion, we have shown that the weak formulation (22)
converges to the second equation of (16) in the sense of distributions.

4.7. Passage to the limit in a combination of the equations for ¢° and Bf

The passage to the limit in the equation of Bj is more delicate, because, unlike what is done to treat
the asymptotic limit in the perpendicular direction, here, we can not use the unitary group method to
deal with the singular term in 1/¢ in equation (24) for Bj. From the study of the asymptotic limit in the
perpendicular direction, more precisely the point 3 of the Lemma 4, we observe a relation between B) and
o, namely, By + bp = B) + p = 0, where we define p = a-yo. From this relation, the idea is to cancel the
1/e-singularity in equation (24) for B with the 1/e-singularity coming from the equation of ¢, this latter
equation being obtained from equation (20) for p®. Indeed, from equation (20), we construct the following
equation for ¢f /0 = (p° /0 — 1)/e, Vo € €= (R4 x T3;R),

o0

/ +/dt/dw( 8,5+vl Vl)ap—f— UJ_ Vﬂp—k_v”a“(p) 0. (66)
Q

0

Let us define the auxiliary component

1 e 1 5 1
ﬁ1:—<]€_Q:>a BSI::_<BSII_@>7 c=1+-.
c pe c 05 b

Taking ¢ = 1) in (66), where v is the same test function as the one used in equation (24), and substracting
o (24), we obtain

0

Q

—vj BT V1Y) — p—’Uu N1+ LBy ALy +miBj Ayy) =0, (67)

In the sense of distributions, this reveals slow dynamics on BBj. Since B) + bo = 0, the weak limit of Bj is
By = (Bi — ¢)/c = By. This means that, after a boundary layer near ¢ = 0, the asymptotic behavior of B
is similar to the one of Bj. And, because B) + bo = 0, the time evolution of B, provides information on the
first-order pressure p = bp or on the first-order density o. Now, to exhibit the equation satisfied by B, we
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pass to the limit in (67). Let us start with the initial condition term. From the assumptions and the discussion
about the properties of sequences of initial conditions in Section 2.3, we have g§ — go in L®(T?)—weak
with £ = min{2,~v}, p° — 1 and B, — By in L?(T3)—weak. It follows that B§, — Boi := (Boi — 00)/c in
D'(T?). Observe that By = By if and only if Byy +bgg = 0. In view of (6), the two conditions V| -vg; = 0
and By + bog = 0 are related to a preparation of the initial data to avoid fast time oscillations. Still, in our
framework, we can incorporate general data satisfying Boy # Boy (and also V| - vg Z 0, see Section 4.5).

It is obvious that 9,Bj — 0;By = 0;By in D'(R% x T3). We next deal with the linear terms of (67).
Using weak convergence of Bj, yielded by the first statement of Lemma 2, we can pass to the limit,
in the distributional sense, in all linear diffusive terms of (67). Using the fifth statement of Lemma 3,
we obtain 0y (p°vj) — Oyvy in D'(RY x T3). Using weak convergence of v§ and the strong convergence
of BY, given by respectively the first statement of Lemma 3 and the third statement of Lemma 2, we
obtain V - (v§BS) — V1 - (vyBy) in D'(R% x T?). Finally it remains to pass in the limit in the term
Vi - (Bjv7). On the one hand, we have weak compactness for B, and on the other hand, we have only
weak compactness for v, because, despite the strong compactness of solenoidal part P; v9 , the irrotational
part Q@ v5 converges only weakly (see Lemma 3). Therefore, to pass to the limit in this term, we will use
Lemma 14 of Appendix A, for which we show below that its hypotheses, splitted in three points, are satisfied.
1) We first recall that cBf = B — (¢°/p°). Using the second statement of Lemma 1 together with the first
statement of Lemma 2, for £ = min{2, v}, we obtain that Bf € L (R ; (L®+L?)(T?)) — L (Ry; L*(T?)).

loc loc

Therefore, by weak compactness, we obtain cBj — c¢By = By — ¢ in LS (Ry; L*(T3))—weak—*. 2) The

loc
uniform bound v§ € L (R ; L5(T?)) and Lemma 4.3 in [7] imply [[vS (¢, + h) — 5 (¢, Mz @, ;zecrsy) —

0, as |h| — 0, uniformly with respect to e. 3) Using the uniform L{2 (R, ;L~(T3))—bound for Bf, the

loc

uniform L2 (R ; L°(T?))—bound for v¢, the uniform L2 (R ; LSNH'(T?))—bound for BY , and the uniform

loc loc

L2 (Ry; LY(T3))—bound for p*v§, with ¢ = 67/(6+~), we obtain from equation (67) and Hélder inequality

0Bj € Li,o(Ry; W10/ CHI(T%)) + Lj, (R W13(T?))

loc

+ Lige (R (Wh + HTH(T?)) < Ly,

loc

(Ry; W—HH(T?)),

where the last continuous injection comes from Sobolev embeddings. Gathering points 1) to 3), we can apply
Lemma 14 of Appendix A with ¢° = Bj, h* =v5,p1 =00, ¢1 =2 (1/p1+1/q1 <1),p2 =k, and g2 =6
(1/p2 +1/g2 <2/3+1/6 <1, for v,k > 3/2), to obtain V - (Bfv) = V. - (Bjvy) in D'(R% x T3). In
conclusion, the weak formulation (67) converges to

C da?]Bouwu(O)-i-(D dt [ dx <B|| (8t+UJ_ -VJ_)dJn
/ [

— oy BL -V iy — oy 4oy + 01 By ALy +miBy Aypy) = 0.

Knowing (by passing to the weak limit) that V, - B} = 0, we recover the first equation of (16) with the
initial data prescribed in (17).

5. Asymptotic analysis in the whole space

This section is devoted to the proof of Theorem 2. As in the periodic case, we first obtain some weak and
strong compactness properties for the same sequences. Since in the whole case the density is only locally
integrable in space, some of these compactness results need different proofs.

5.1. Compactness of p° and o°

Here, we aim at proving the following lemma.
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Lemma 6. There exists a generic constant C > 0, which may depend on Cy, a, and v such that the sequences
p° and o° := (p° — 1) /e satisfy the following properties.

10| e sy mey) <C, and  (p° —1) € LS. (Ry; L3N H-*(R?)), Vy>1, a>1/2,
1% = UlLes, (300 ®e)) < ce*, and |p° - Ulpee rysz2rey) < Ce, Vy2>2,

1p° = Ul my Ly msy) < Ce, forall 1<v<2,

p°—1 in L2 (Ry; L3N LY _(R?)—strong, Vv >1,

na-«@®s) <C, k=min{2,7}, «>1/2
“X(R3))—weak*, k=min{2,7}, o«>1/2.

o™l s,

loc

(Ry;LENLE

loc

o° — o in L5 (Ry;

loc
Proof. We start with the first bound of the first assertion of Lemma 6. We first claim that p® €
L2 (Ry; LY (R®)) if p° € L2, (Ry; L (R?)). Indeed, using the convexity of the power function RT >
x — z7 (with v > 1), and energy inequality (30)-(32) with the pressure term II3, there exists a con-
stant co, such that for any compact set K C R3 0 < [Ldx{(p°)" —vp° + v — 1} < ¢o. Then,
Jdz (p°) < co+ (v = DIK| + 7 [ dzp® < oo, if p* € Lloc(RJleloc

last property. For this, we consider a test function ¢ € €>°(R?), such that ¢ > 0, and ¢ = 1 on a subset K

(R?)). It remains to prove this

of its support S. From the mass conservation law and the energy estimate, we obtain

d
o | depte= /dzp€v6~vw§ ||2V\/¢|LOC(R3)(/CZ$P€|'UE|2> (/dzp5w> < co</da:/f<p>,
S R3 S S

S

where the constant ¢y depends on Cp and ¢. This inequality leads to [ dz|pf| < fs drpfe <
exp(cot) [ dz p§p, which shows that p° € LS (Ry; Ly,

L (R?)). It can also be shown from the second and

third statements of Lemma 6. Now, from the uniform bound (36) and energy inequality (30)-(32) with the
pressure term II3 defined by (38), we obtain II3(p°) € L2 (Ry; L' (R?)) uniformly with respect to . From
this bound and Lemma 12 (with f = p® and f = 1), we obtain, for any T' € (0, +00),

sup /dm{lps — 1L 1j<sy + 107 = 1" Lgpe—1j55y} = sup /dxfﬂ’l( %)
te[O’T]RS telo, T]

1 —1)e —1)e?
< sup — [ dxTly,(p°) = sup /da: I3(p°) < u (68)
t€[0,7] /‘61]R telo,1] K1 Kia

This inequality implies the bound in L® (R4; L3 (R?)) in the second part of the first statement of Lemma 6,
and also the strong convergence of p¢ to 1 in L{ (R, L3 (R?)) in the fourth statement of Lemma 6. To
complete the proof of the second part of the first statement of Lemma 6, we have to show that L3 (R3) —
H~%(R?), with o > 1/2. This embedding is obvious for v = 2. For  # 2, from the definition of the space
L3(R?), the density p°(f) — 1 can be splitted into parts di(t)* := (p°(t) — 1)Lqjpet)-1)<s3 € L*(R?) and
d5(t) := (p°(t) — D)L{jpe(e)—1y>s1 € L7(R3). The part d5(t) is obviously in H~*(R3) with « > 1/2. For the
part d5(t) we proceed as follows. By Sobolev embeddings, we have H*(R3) < L7 (R3) with 1/y+1/~' =1,
and o > 1/2 since v > 3/2. By duality we then obtain d5(t) € L7 (R3) — H~*(R3). Therefore (p°(t) — 1) €
H=%(R?), with « > 1/2. We continue with the second assertion of Lemma 6. Estimate (68) and the
inequality [p® — 1|2 > |p — 1|7, for v > 2 and |p® — 1| < § < 1, imply the first part of the second statement
of Lemma 6. The second part of this second statement appeals to Lemma 11. Indeed, from this lemma, for
¥ > 2, we obtain [p® —1|> < e(y—1)/(v1a)TT3(p%), which gives [[p° = 1|| e (m,;L2(rs)) < €3/ Coly — 1)/ (v10a).
We continue with the third assertion of Lemma 6. Using Cauchy—Schwarz inequality and estimate (68), we
obtain, for any compact set K C R?, and any T € (0, +00),
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v/2
sup [|p°(t) = 117 ) < [K["77/? sup (/d:clps - 1|211{|p61|<5}>
te[0,T] te[0,T

+ sup /dfﬂ|p6 - 1"Y]1{|pe_1‘>5}
tE[O,T]K

< C(|K|a COa a, 7)(5’y + 52) )
which justifies the third assertion of Lemma 6. Then, the strong convergence of p° to 1 in L%, (R, L (R?))
in the fourth statement of Lemma 6, is obtained from the first part of the second statement of Lemma 6,

and the third statement of Lemma 6. We continue with the fifth statement of Lemma 6. The uniform bound

in L2 (Ry; LE (R3)) for o° comes from the second part of the second statement of Lemma 6, and the third

oo

> (Ry; L5(R3)), we distinguish two cases according

statement of Lemma 6. For the uniform bound of ¢ in L
to the value of . For «v > 2, since k = 2, the second part of the second statement of Lemma 6 implies the

fifth one. For 1 < y < 2, estimate (68) leads to

sup /dw{
t€[0,T7]

R3

Co(y—1)

pr—1 1
{|%|>g}}_ K1Q ’

—Q‘Pa—l‘“*

2
) Lijesstjcay 677717

g

for any T' € (0, +00). This last estimate and inequality €7=2 > 1, imply the bound of ¢° in L (R ; L5 (R?)).

loc
To complete the fifth assertion of Lemma 6, we observe, as above, that we have the embedding Lf(R?) —

H~%*(R3), with « > 1/2 and xk = min{2,~}. Finally, the sixth statement of Lemma 6 is obtained from the
fifth assertion and weak compactness properties. This ends the proof of Lemma 6. O

5.2. Compactness of B®

Here, we aim at proving the following lemma.
Lemma 7. The sequence B¢ satisfies the following properties.

B — B in L} (Ry;L°N H'(R?)—weak N L (R ; L*(R?)) —weak—,
V.-B°*—V,-B, =0 in L} (Ry;L*(R?)—weak,
B — B, in L] .(Ry;L (R%)—strong, 1<7r<oo.

T
loc
Proof. The proof of Lemma 7 is similar to the proof of Lemma 2. 0O
5.83. Compactness of v¢ and p*v°®

Here, we aim at proving the following Lemma.

Lemma 8. Assume v > 3/2. Let s := max{1/2,3/y — 1} € [1/2,1). The sequences v and pv® satisfy the
following properties.

v* — v in LI (Ry; L5 N H'(R?))—weak,
Ve v —V, v, =0 in L} (Ry; L*(R?))—weak,

loc

Qve —0 in L} (Ry; LS N HY(R?))—weak,

loc

PivS — Pivg =v, in LE (Ry;LE N HE(R?))—strong, 1<p<6, 0<s<]l,
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p°v° — v in LE (Ry; L NH °(R%))—weak, Vo>s, q=6v/(6+7),

loc
P — v — 0 in L} (Ry; LY

IOC(R?))) —strong, ¢= 6’7/(6 + ’7) )

P, (p°v5) — Prvy =v; in L (Ry; Li (R®))—strong, ¢=67v/(6+7).

Proof. We start with the first statement of Lemma 8. The proof of the first statement of Lemma & is similar
to the one of the first statement of Lemma 3 except for the bound L% (R.;L?*(R3)). We consider the
decomposition v® = vf + v5, where v := v°1{c_1|<s}, and v5 := V"L, _1)56). For vf, since [p® — 1| <6,
we obtain 1 — § < [p°| and thus

1/2
(e < (1= 8) 2o [0 122 g sy < V/Co/(1=0), (69)

ol s

loc

where we have used energy inequality (30)-(32) with the pressure term II3 defined by (38). For v§, using
in order, Holder inequality (1/y + 1/4" = 1), estimate (68), Gagliardo-Nirenberg interpolation inequality
(1/(2v)=0/2+(1-0)(1/2-1/3),1.e.,0 =1-3/(2v) € (0,1), since 3/2 < v < o), and Young inequality
(ab < 0a'/% 4 (1 — 0)b'/(1=9)) we obtain

/dx wg? < 671 /daz 216" = 1L —159)
R3 R3

<5 (- 1)]1{|p5—1|>6}HLV(RS)HUE”?LM’(RS)

L1 Coly =D\
5 1<7a 82/’Y||’UEH%27’(R3)

K1

IA

B 00(7_1) 1/v 2(1-90)
<6 (7 /o 38 oy |V )

1 Co(y—1 1/ e €
< 1(%) 27 (0]10° (132 gsy + (1 = O)|VoF I3 gs)) - (70)

From energy inequality (30)-(32) with the pressure term Il3, we obtain Vo© € L _(R4; L*(R?)), uniformly
with respect to €. Using this last bound and (69), a local time integration of estimate (70) implies that there
exist two constants Ky and K; (depending on Cy, 7, 1, @ and ¢§) such that

||UE||2L§‘OC(R+;L2(R3)) < Ko+ K152/7Hva||2L120C(]R+;L2(]R3)) : (71)

For £ small enough, this last inequality implies v € L2 (Ry; L?(R?)) and thus v® € L2 (Ry; LN HY(R3)).
We note that estimates (70)-(71) also imply e "w§ € L2 (Ry; L*(R3)), uniformly with respect to e, for
0 <1 < 2/3 (since v > 3/2). We continue with the other statements of Lemma 8. Using Lemma 6 and
energy inequality (30)-(32) with the pressure term II3 defined by (38), the proof of statements two to seven
of Lemma 8 is similar to the proof of their counterparts of Lemma 3 for periodic domains. O

We continue with an auxiliary lemma, which will be useful to pass to the limit in the term p*v§ ® v9.
Contrary to the periodic case, we are not able to get the strong convergence (50) for U®. Indeed, we can
still prove locally strong compactness in space-time for U¢ (using an Aubin—Lions theorem and estimates
(75)-(76) below), but returning to U¢, via the group of isometry S, such local strong compactness seems
unaccessible since S is non local. To recover some strong compactness for U¢ we consider a truncated version
of U¢ and use the uniform integrability in space of such truncated sequences as well as the energy inequality
and the strong convergence of p°.
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Lemma 9. Assume v > 3/2. Let us define U := (¢, ®°), where ¢° := bp®+ Bj, and ®° := Q (p°vS ), with
0% = (p° —1)/e. We also define U° := S(—t/e)U®, where the group of isometry {S(7);7 € R} is the same
as the one defined in Section 4.5 with now Q = R3, except that we substitute c for c¢°. Finally, we recall that
k =min{2,v}, and we set k = max{1/2,3/(2v)} € [1/2,1) and s := max{1/2,3/vy—1} € [1/2,1). Then,

1. We have the following uniform (with respect to €) bounds

¢° € LRy H™*(R%), >3, (72)
Pt € Lﬁfc(R+; (L2 + LQ’Y/(’H‘l)) N LIZO'YC/(’Y-FU N H—B(RS)) . B> % (73)
070" € L (Ry; (L2 4 LOF/O+0) 0 L%/ O+ g==(R3)) | e > 5. (74)

2. There ezists a constant C, independent of €, such that

||u8||L§’§C(R+;H—f’(R3)) <C, o>k, (75)
JF
10: U (g imr-rmay < C5 7> (3)7 (76)

3. There exists a function Us = t({/JVE,t\T/E) € L (Ry; L2(R3;R3)), a constant C, independent of €, and a

loc

function w : Ry — Ry, continuous in the neighborhood of zero, with w(e) — 0, as € — 04, such that,

for o >,
||Z/~{€HL1°§C(R+;L2(R3) <, (77)
U = U || Lo Ry - (o)) S w(E), (78)
U = S(t/e)U||Lee (my - (r3)) S W(E), (79)
Qo] — Sa(t/e) Z/NIEHL?OC(R_,.;H*U(R?’)) Sw(e) +e. (80)

Proof. We start with the point 1 of Lemma 9, beginning with (72). Using the fifth statement of Lemma 6
for an estimate of o°, the first statement of Lemma 7 for an estimate of Bf, the embedding (L"+ L?)(R3) —
H~%, with « > 1/2 and x > 3/2, and the definition ¢° := bp® + Bj, we obtain (72). We continue with (73),
by recasting pv° as

£, =, € £ £01,E pE £
P = (Vv )W pe L pe—1)<sy + (Vp*v )\/%\/V) — ULgjpe—1)>6}- (81)

The first term of the right-hand side of (81) is the product of the function \/pFv® € L (Ry; L?(R3))

loc

and the function p®ly,-_1<53 € Ly, (Ry; L>=(R3)), thus using Holder inequality this product is in

loc

L2 (Ry; L2(R3)). The second term of the right-hand side of (81) is the triple product of the func-
tion /pFv° € LS. (Ry; L*(R3)), the function /p%/+/|p® — 1[Lgpe—156y € LS (Ry; L®(R?)), and the
function /[pf — 1[L{jpc—1j>5) € LS (Ry; L2Y(R3)), thus, using Holder inequality, this triple product is
in Lo (Ry; L2/ O+ (R3)). Using the Sobolev embeddings HP(R3) «— {L>/0-1D(R3), L?(R3)} (with
v > 3/2), for B > 3/(2y), by duality we obtain {L?(R3),L>/0+D(R3)} — H~F(R?); hence (73).
We continue with the proof of (74). We first consider the decomposition g°v® = p°v§ + ¢°v§, with v§
and v5 defined as in the proof of Lemma 8. From ¢°ly,-_1<s} € L% (Ry; L*(R?)) (fifth statement of

loc

Lemma 6) and v¢ € L (R, ; L5(R3)), using Holder inequality, we obtain o*v{ € L2 _(Ry; L3/2(R3)). From

loc loc

0" L{jpe—1>6} € LiS,(Ry; L7(R3)) (fifth statement of Lemma 6) and v € L (Ry; L5(R?)), using Holder

loc

inequality, we obtain ¢v§ € L2 _(R,;L9(R?)), with q = 6x/(6 + ). Moreover, using the first statement

loc
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of Lemma 6 and Holder inequality, we obtain o°v® € L _(Ry;L{ (R?)). It remains to show the H~*-
bound in (74). Since o° vl € L% (Ry; L3/2(R3)), using the Sobolev embedding L?/2(R3) «— H~*(R3), with
o > 1/2, we obtain ¢°vf € LE (Ry; H~*(R?)). Since ¢°v§ € LlOC(R+,Lq(R3)), using the Sobolev embed-
ding L9(R3) < H~* Wlth §> (3/&) — 1 while (3/k) — 1 < 5, we get 0°v5 € L2 _(Ry; H—*(R3)). Combining
this two last results, we obtain p°v® € L (Ry; H™*(R3)), with s > s; hence (74).

We continue with the point 2 of Lemma 9, starting with (75). Using (72)-(73) and since the group S
(resp. the operator Q) is an isometry (resp. continuous) in H*(R3) with a € R, we obtain (75). For (76),

observe that 0,U* = S(—t/e)F*, with F© defined by

Ff = — b0y (p°0f) + V1 - Qu(0°v]) — BjV. - v°
t <F1> _) T VABI BT Vel + (AL m A B
F5) | F5=—QuV.- (50l @ 0%) — (v — DVLIL(p) — 1VL(BP) + 1QLBL
+QuV.- (B ®B) +piVL(VL-05) 4+ pfAQuuvs + AV (Ve -09).

(82)

Using estimates of point 1 in Lemma 9 and following Step 1 in the proof Lemma 4, we obtain from (82)
and k > 5 (v > 3/2), Ff € L} (Ry;(H™ 1+ W=13/2  H=H)(R3)) — L (Ry; H-<"1(R?)), and
Fs e L3 (Ry; (W04 Wbl 4 H=1 4 L2)(R?)) — L2 (Ry; H~"(R3)), with r > 5/2+ 4, for any § > 0.
Therefore, using the isometry S in H®(R?) for any a € R, we obtain (76).

We continue with the point 3 of Lemma 9, starting with (77). For any ¢ > 0, we define ’(’/;E =

S1(—t/e)[¢° 1 pe<145}] and Ve = Sy(—t/2)Qu(p* v] I{pe<1+4})- Clearly, from the uniform bounds above
and the isometry S in H*(R3) for any o € R, we obtain ¢, ¥¢ € L (R, ; L2(R?)). We continue with
the proof of (78). Since ¢° € L (Ry; L5(R?)) and Bf € L2, (Ry; L*(R?)), using the De la Vallée Poussin
criterion, we obtain that ¢° is spatially uniformly integrable in L3/2(R?), uniformly in time on any compact
time interval. Then, from the fourth statement of Lemma 6, we obtain [|¢* 15146} ||L1OC(R+ .L3/2(r3)) — 0, as

¢ — 0. Therefore, using the isometry S, we obtain the first part of (78), that is || — %/JEHL;;; Ry H-(®3)) = 0,
as € = 0. Since p°v§ Lipes146) = VPV VP L pe 146}, using p° — 1in LS (Ry; L (R?)) —strong (fourth
statement of Lemma 6), the uniform bound ||p®|v¢|? lzee (ry ;L1 (3)) < C < oo, and Hélder inequality, we
obtain p*vg L{pes145y — 0in LS (Ry; L>/(+1(R3)), as € — 0. Since the group S (resp. the operator Q)
is an isometry (resp. continuous) in H%(R?) for any o € R, using the embedding L2/ O+ 1D)(R3) < H—7(R?)
(Ry;H—7 (R3)) — 0,ase —0.
Still using the isometry S, we deduce estimate (79) from (78). It remains to prove (80). Using the continuity

of Q1 and (79), we obtain [QLv5 — Sa(t/e) U2 v, im-orey < II(p° — 1)UJ_||L12OC Ry H-o(R3)) + W(E).
We split (p° — 1)v into the part di := (p° — 1)v] 11j,c—1)<sy and the part d5 = (p° — 1)v] Lyjpe_1j>63-
Since L3/2(R3) < H~1/2(R3), using Holder inequality and estimate (68), we obtain ||d§ 22 (R ;-0 ®s)) <

dillLz @ sm-172@sy) < 1(0° = DIgpe—11<ayllnge ysr2@en v oz, (v, o re)) < €. For the part d3, we dis-

tinguish two cases according to the value of 7. For v > 2, following the same proof as for dj, we obtain
5l L2 (r,m--(rs)) S €. For 3/2 <y <2, we have k = 3/(27) > s =3/y — 1 (since v > 3/2). Then, using

loc
the Sobolev embeddings L57/6+7)(R3) < H~%(R3), and estimate (68), we obtain d5] L2 (r i (®3))
d5llze mym-—+@s)y) < ldsllee mym—sm@sy < 100 — Dipe—1>6ylloe L“/(]R3))||UL||L

£2/7 < e. This ends the proof of Lemma 9. O

(see above in the proof), we obtain the second part of (78), that is || ¥ — ¥¢||

loc

ANAN

(R4;LO(R3))

loc

5.4. Passage to the limit in the compressible MHD equations

Here, we justify the passage to the limit in the weak formulation (18)-(25) of the MHD equations for
the whole space. Using Lemmas 7 and 8, the passage to the limit in equation (23) for Bf follows the same
proof as the one of the periodic case described in Section 4.4. Using Lemmas 6, 7 and 8, and following the
sames lines as the ones of Section 4.5 for the periodic case, we can pass to the limit in almost all terms of
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equation (21) for p®v9 . Indeed, the only difference with the proof of Section 4.5 is the justification of the
limit ¢ — 0 for the term p®v ® v that we detail below in Lemma 10. In particular, the pressure term
pe = p°/e?+ B Je+|B¢|?/2, rewritten as p¢ = ¢ /e+a/e?+m5, with 75 = (y— 1)H3( €)+|B¢|? /2, converges
weakly to 71 + 71 in D' (R%. x R®). More precisely, ¢° /e — do(t) @+ in H ' (R4, H™"(R?))—weak, with
r > (5/2)F, and 1§ — 7o in LS (R4 ; LY (R3))—weak—*, while the constant term ba/e? disappears by spatial
integration in (21). As in the periodic case, the term o (t) ® 71y cancels the irrotational part Q ug, of the
limit term ug, , so that the limit initial condition is P ug; = P vg,. We also obtain ¢* — ¢ = bp+ By =0
in H=1(Ry, H " (R?))—weak, and the relation bo+ By = 0 holds for a.e. (t,z) €]0, +00[xR3, since bo+ By €
L2 (Ry; (Lf . + L*)(R?)). Using Lemmas 6, 7 and 8, the passage to limit in equations (22) and (67), for
respectively p®vj and BB®, is justified in a similar way as the one described in Sections 4.6 and 4.7 for the
periodic case. Finally, to conclude the proof in the case of the whole space, we use the following lemma,
which is the counterpart of Lemma 5 with a different proof since we do not have the strong convergence

(50).
Lemma 10. There exists a distribution 3 € D'(R% x R?), such that
Vi-(pFri®v]) —Vi-(vi®uv) + Vimg in D'(R} xR%).
Proof. First, we observe the following decomposition
Vi (pPvl@v]) =V (pPol @PLoT)+ V- (PL(p"0]) @ Quol) + Vi - (Qulp™l) ®Qurvi). (83)

Using the fourth and fifth statements of Lemma 8, for the first term of the right-hand side of (83), we obtain
Vi (pfv] @v]) = Vi (vL ®v1) in D'(R% x R3). Using the third and seventh statements of Lemma 8,
for the second term of the right-hand side of (83), we obtain V| - (P, (p°v7) ® Q v5) — 0 in D'(R% x R3).
It remains to show that we have V| - (Q (p°v]) ® Q v]) — Vims in D'(R% x R3), or equivalently, that,
for any 1, € €>°(Ry x R3) such that V -1, = 0, we have

lim I'* := hm dt/dx (QL(pv))[DL91]Qrv] =0. (84)

e—0
Ry

Since Q@ v§ is bounded in L% (R;; H'(R?)) uniformly with respect to e, Using (79) with o € [k, 1], we
obtain

I —T3| S w(e), with T7:= /dt/da:t(Sg(t/e) aE)[DﬂbL]QLUj . (85)

Ry RS

Using the isometry S in H%(R3) for any a € R, estimate (95), bound (77), and the fact that the group S
and the mollification operator J3 s commute, we obtain, for any p € [0,1] and & € (0,1),

1S2(t/2) T3 s U = Sa(t/e) U1

loc

(Rost-n () < [[T5,582(t/e) U — Sa(t/e) U g

loc

+ | Ts5Sa(t/e) T s U — Salt/e) Tas U | oo,
S oM+ ||X5||L1(R3))Hu lzge

loc

(Ry;H~ ¥ (R3))
(R4 H-1(R?))
(Ry;L2(R2)) < O (86)

Since @, v] is bounded in L (Ry; H'(R?)) uniformly with respect to e, using (86), we obtain, for any
€ (0,1],

S-S <6%, with T% :=/dt/dxt(Sg(t/a)jgiéZ]E)[DLwL]Qij. (87)

R, RS
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Since for any & > 0, and any v > 0, Sg(t/s)jgiéﬂs € L (Ry; HY(R3)), there exists a constant Cy such

loc

that ||Sa(t/e) T3 s L?EHLIO&(RJr;HU(Ra)) < (s, where Cs explodes as & — 0. Then, using (80), we obtain
05 —T5) < Cs(w(e) +¢), with TI:i= / dt / dz ' (S(t/e) T2 U) Do )Sa(t/) T . (88)
Ry R3

We now claim that

TS—TS| <5, with TIS:= / dt / A (Sa(t)2) To.s UE) D th1 1S (t/2) T U - (89)
R, RS

Indeed, using in order [S, J35] = 0 (where [-, -] is the commutator), L' * L? C L?, Cauchy-Scwharz
inequality, [|2x(x)||L1rs) < C < oo, estimate (95) (with o = s = 0), the isometry S in H*(R?) for any
a € R, and bound (77), we obtain

s —T5= /dt/dmt(sz(t/&?)jg,zs U Ta,5, Ditp1]Sa(t)e) UF

R, R3
- / dt / dat (Sa(t/2) To.s UF) () / dy (D11 (y) — D1 (1)) xs(w — 1)Sa(t/e) U (3)
R4 R3 R3

&2l Exs| * (Sa(t/e) US)| b

loc

< S| DAL || o r, xre)||S2(t/€) Ts.5 US| Lo

loc

S OS2 (/) U e i, sr2meyy S SIU I vy r2(rey) SO

(R4 L2 (R3))

We now claim that there exists a constant 55, which explodes as 6 — 0, such that for all v > 0,
T o= || Ta s U (tr) — Tas U (t2) || 1~ (o) < Cis ([ta — t2| + w(e)) (90)
Indeed, using (76) and (78), we obtain

P < X llaver [U5 (81) = U () | sy + 205 | mveo U7 = U g

loc

Ry H=7(R?))

to
< Cs (/dr 10U (7) || -+ (my + w(a)) < Cs(Jt1 — ta] + w(e)).
ty

Time continuity estimate (90) allows us to replace the term S(t/e)JssU° by its time regularization
TinS2(t/e)Ts.s U (with n > 0) since the error is controlled as

IS(t/€)TinTas U = S(t/€) To,s US| gz, o sy < Cs (0 + w(e)) 4 (91)

loc

for all v > 0. Using (91), we then obtain

U5~ T5| < Cs(n+ w(e)), with T% = / dt / ' (Sa(t)2) Tim To.s UF) D01 1Sa (/) Tim Tos UF . (92)

Ry RS

Therefore, by gathering estimates (87), (88), (89) and (92), and by first taking the limit £ — 0, then the
limit 1 — 0, and finally the limit & — 0, we observe that the proof of Lemma 10 is complete, if we prove
I't — 0, as ¢ — 0. This is the matter of the rest of the proof.
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In other words, we just have to show lim._,oI'§ = 0, when J1 75,5 Us is replaced by a smooth version
of U, that we denote by V*° (to simplify the notation) with V° € €™ (R; H¥(R3)) for any m > 0 and any
v > 0 (not uniformly with respect to 1 and 8). As in the proof of Lemma 5, following the spirit of the proof
of the convergence result in the part III of [34], we introduce ¢ = £ ($®, ' @°) := (S (t/e) V, S (t/e) V) =
S(t/e) Ve, with Ve =t(¢°,10¢) € €™(Ry; HY(R?)), and we compute explicity V, - (®F @ @) via Fourier
transform. Since P, ¥¢ = 0, then V¢ = V¢, with ¢ = AIIVJ_ - P&, This and commutation between
S and P; imply P, ®° = 0, so that ®° = V  ¢°, with ¢° = Allvl - ®°. We introduce the Fourier
decompositions

e __ 1 iz Je e __ i i&-x.(\e
v = g [ e, v = ooy [deet i oe
R3 R3

and we denote by ¢ = (¢, 1D = i'¢, ¢) the Fourier transform of ¢ = *(¢°, '@ = V ¢°). Inserting
the Fourier decomposition of 4I¢ in the linear equation 0; U = L1I° /e, we are led to solve linear second-order
ODEs in time for the Fourier coefficients ¢¢(t) and ¢°(t), with the inital conditions £I°(0) = V°(t) and
9, 1(0) = LV=(t) /e, where £ =i'(—c&)-, '€,). Solving these linear ODEs, we obtain for @,

€ € iz fL
=V, ¢ = / d¢ e'€ m me (¢, §)cos(\f|@_\ ) (t §)sm(\f|§J_| )}

where we have introduced ®° = (|, | (with m® € €™ (Ry; HY(R3)), ¥ (m,v) > 0) to symmetrize the
expressions. We then obtain

1 i T neE I3
O° ® O° = m/dgﬂ!dgel<5+<> 0°(t,)0°(t, ) (€L ®CL + (1L ®EL), (93)

R3

with 6°(t,€) = (W (£, €)/[€L]) cos(VelELlt/e) — ((t, €)/(Vel€L)) sin(V/el€L|t/<). Then, we obtain

Vi (@0 90 =~ [de [ace €O €+ Cle + P 00(1,0)
R3 R3
’ m/ deZ dg HEHOT (€1 — (L ~ [P 8 (1) . (94)

The first term of the right-hand side of (94), is a gradient and thus its contribution in I'§ is null since
V1 -9y = 0. In fact, following estimates below, we can show that this term converges in D'(R% x R?) to
the pressure term V| 73, as € — 0. Then, it remains to show that the second term of the right-hand side of
(94) vanishes in D’ (R%. x R?), as € — 0. In fact, because of the presence of the factor 1/|¢, | in the definition
of #° and since, contrary to the periodic case, we now have 1/3(t, 0) # 0, we have to consider a truncated
version of ®° @ ®° around low frequences ({; ~ 0). For this, for any § € (0,1), we consider ¢§, V5, m5,
and O@f defined by inverse Fourier transforms of ﬂg = z/AJEIL{KMZ(;}, li)g = ﬁ)slﬂguz(g}, m§ = |§J_|II)§ and by
@5 1= Sy(t/e) L(¢5, 'V 15). Using Cauchy—Schwarz inequality, we then obtain the error term

[0 @ @ — BF @ OF | Le< (

loc (RysLoe (R3))
(L+[¢1*)7?

< [ de [ A1 (1 + 51 D Le. oy (90 + 1. OD (i zors

R3 R3
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12 s e
< / d§n< / da) ( / déL (6 (1, €)° + [ <t,»:>|2>)

[€1]<6

1/2

</d§(1 +[¢12)Y (Ime (8, O)|? + |¢e(t7<)|2)>1/2(/d< - |<|2)_V>1/2

R3 R3

1/2
<o faa0+ |§n|2)_”/2< [dea+lamy Gacc o + w?E(t,a)F))
R R2

(R HY (R3)) T 9% || Lo (R+;HV(R3)))

loc

(Hm5||Loo

loc

S (I | g, ey crrm sy + 9% Loy o)) ) (107 || e, (s o)) + [19° g, ey v 3))) S 6

loc loc loc

for any p > 1/2 and v > 3/2. Therefore, we just have to show the claim for ®§ with any fixed 6 € (0,1).
This is equivalent to assuming that 1»° and ¢ vanish in the tube Z5(€) := {€ € R3 | |¢,| < 4}, for any
fixed ¢ € (0,1), and independently of (¢,&, ). With this assumption, we just need to estimate the second
term of the right-hand side of (94) that we decompose as follows,

/df/dCei(“C” (6 = Co)(ELP = [CL?)O=(t,£)0° (£, )

R3 R3

= %/dﬁ/dc 61(5+C)-z (fL B CL)(|§L|2 B CLZ){

cos (VElleal +1621)2) +os (vllea — ey )] PRI
o (VA1 + 162D2) + s (Va(es] -~ fca )] IO
— [sin (Ve(e] +1¢uh2) = sin (Ve(léL] - [c) )] “W
o (Vlea] + 161 8) — eos (Vs - fca )] “ IO,

The eight terms in the right-hand side of the previous equation can be estimated in a similar way, hence we
only treat one of them, for instance,

A~

PE(t, Ome(E, ¢)

—OTE+TE
Vel€LllCL] e

/ ¢ / dCHEFOT (¢4 — ) (€L — |G [P sin (el — [C)Y)

R3 R3

where,

A~

7= e [t [ace O e, —Cpilea] + feal)cos (vVellen | - 60D ) et

R3 R3

and

75 =< [[as [[acerom e~ el + feuloos (vallerl - ) g (CEEREOY
RS RS

ot
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The proof of Lemma 10 will be complete if we prove that || 7|

loc

(Ry ;Lo (R3)) and HEEHLoo (Ry ;L= (R3)) vanish

loc

as € — 0. Indeed, for any v > 3/2, using Cauchy—Schwarz inequality, we obtain, for any 7' € (0, +o0) and
any fixed 6 € (0, 1),

be(t, &) @ (t,
1T g5 ey Se s [ e [ ac(e+ ot IO
t€[0,7] €| ||
T IL Q)

1 1 21\ (vH1)/2) fe )
<ed up ([d& 4(1+|£‘2)V/2(1+|§| ) b= (¢, )|

tel0,T

([ ¢ gt + kP20,

Sed vl

loc

(s @) [0 | g, ey i) S,

loc

where 7°(€) denotes the complementary set of 75(£). In the same way that we have controlled the term
T, we obtain the following estimate for the term 75,

175 Ml s,

loc

® s+ (R2) M || Lps, Ry s v+ (R2))

loc

Ry Lo ®2)) S €07 (|00 Lo

loc

—+ ||¢5||L?§C(R+;HV+1(R3))||8tm€||Loc (Ry; HY+1(R3)) ,S e. 0O

loc

Appendix A. Toolbox

This section collects lemmas frequently used throughout the text. We start with inequalities for the first-
order Taylor expansion of the power function x — 27, with v > 1. These inequalities, mentioned in [34], can
be seen as “generalized” strong convexity properties of the power function on the non-negative half-line.

Lemma 11 (Convezity properties of the power function). Let & > 0 and v > 1 be fized positive real numbers.
For all R €]z, +00], there exist positive constants v;, i = 1,2,3, depending on v, R and Z, such that

x7 — vz’ 4 (v — 1) vile—z?, 0<x, ~v>2,
=27 -2 4z —2) > -2, 0<z<R, 1<y<2,

vslr—z|7, R<z, 1<7vy<2.

Proof. Knowing that v > 1, the power function R* > 2 — 27 € RY is convex on R, and strongly convex
on any compact set of R* . The details are left to the reader. O

Recall that the Orlicz space L] (R3) is defined by (34), or see Appendix A in [33].

Lemma 12 (A criterion for belonging to the Orlicz spaces LY(Q)). Let v > 1, f > 0 and § > 0 be fized
positive real numbers. Let f € L] (R3;R.) be given. Define

loc

Moo LG (RS Ry) = L (R%Ry), Ty (f) = f7 =y f+ (v =D f7,
33;{ L (R Ry ) = L (R% Ry ), 3;}{(]0) = |f - f|21{\f—f\§6} +f - JF|7]1{|f_f|>5} .

There exist two constants k1 and Ko, depending on (f,%é), such that

k1 30L () < T () < o 331 (F).
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It follows that Tz (f) € L*(R®) if and only if (f — f) € L3(R?).

Proof. The proof is long but straightforward. It mainly relies on Lemma 11, a Taylor formula with integral
remainder, and on the convexity (resp. strong convexity) of z + 27 on RT (resp. on any compact set of
RT). The details are left to the reader. Note that this result is similar to the more general Lemma 5.3 in
[33] to which we can also refer the reader for a proof. O

Lemma 13 (A4 space-time compactness lemma of Simon [{7]). Let By € B C By be Banach spaces (the
embedding By € B is compact and the embedding B C B is continuous). Let I be a compact interval. Fix q
with1 < g < 0o. Let f. : I — B be a family of functions indexed by € in a directed set” J. Thus, for allt € I,
we have f-(t) € B. We assume that { f.}ccs is bounded uniformly with respect to e in L1(I;B)N LY (I;B)
and that {0 f-}Yce is bounded uniformly with respect to € in L*(I;81). Then {f-}ocs is relatively compact
in LP(I;B) for all p with 1 < p < q.

We continue with the following space-time compactness lemma established and used in [33] for the proof
of existence of global weak solutions to the compressible Navier—Stokes equations.

Lemma 14 (A space-time compactness lemma of P.-L. Lions [33]). Let Q be TV or RN or an open set of RY.
Let J be a directed set. Let {g.}ecy, and {he}tecy be sequences converging weakly to g and h, respectively in

LV (Ry; LP2(Q)) and LE (Ry; L2 (Q)), where 1 < p1, p2 < 0o and
1 1 1 1
Sp =1, S =1,
1 @ P2 @

Above, weak convergences are weak—* convergences whenever some of the exponents are infinite. Assume, in
addition, that

(i) ;9. is bounded in Li.(Ry; W~ (Q)) for some o > 0, uniformly in ¢ .

(@) l|he(t,-) = he(t, - + )l Lm (my ;02 () —> 0 as [§] = 0, uniformly in €.
Then, the sequence {gche}ecs converges to gh in the sense of distributions in R x Q.

Proof. This is Lemma 5.1 of [33]. The assumption (i) is reminiscent to the Aubin-Lions theorem. The
assumption (¢4) is reminiscent to the Kolmogorov—Riesz—Fréchet criterion (e.g., see Theorem 4.26 in [7]) for
compactness (“LP-versions” of the Ascoli-Arzela theorem). O

We end with results about mollifiers.

Lemma 15 (Mollification operators). Let x : R4 +— Ry be a non-negative function belonging to €>°(R%; R ),
and with total mass one. For anym € (0,1), define xn(-) =n~"%x(-/n). The familly of non-negative functions
of mass one {Xn >0 are called a family of mollifiers, while the operator Jyn : D'(RY) — €>°(R?), defined
as Janf = Xxn * [, for any distribution f, is called a mollification operator. The mollification operator
Jan has the following approzimation property. For all f € H*(RY), with s € R and any o € R such that
0 < s—o <1, we have the following approximation error estimate

[Tanf — fllae ey SN 7Nl 7o ray - (95)

2 Since a directed set [6,28] is countable or uncountable, the one-parameter family of functions {f}.c s, called sequences (respec-
tively subsequences) by abuse of language, must be understood as generalized sequences (respectively subsequences) such as nets
(respectively subnets) in the sense of Moore—Smith (see, e.g., Chapter 4, Sections 11 and 12 in [50]) or filters (respectively, finer
filters) in the sense of Cartan (see, e.g., Chapter 1, Section 6 in [5]).
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Proof. The property Junf = xn * f € € (R?) for any 1 > 0 and any f € D'(R?) comes from the following
convolution property D’ (R%) x D(R?) C ¢>°(R?). For the proof of (95), observe

1 Tamf — FI21e oy = / de (14 [€2)7 1Re) — 112 |F(6) 2

Rd

2(s—0o) d |5(\(n£)_1|2 2\s | £ 2'
<y / € (o ey (L YA€)

Using the Lebesgue dominated convergence theorem, this last estimate leads to (95), since X is smooth at
the origin with ¥(0) =1. O
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