The high contrast game

Frantz Martinache

September 25, 2017

Propagating the E-field

$$
\mathrm{d} E(x, y)=\frac{1}{r} \times K \times E(X, Y) \times \mathrm{e}^{\mathrm{j} 2 \pi r / \lambda} \mathrm{d} \sigma
$$

Fresnel diffraction

Fresnel diffraction

$$
\mathrm{d} E(x, y)=\frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
$$

Fresnel diffraction

$$
\begin{gathered}
\mathrm{d} E(x, y)=\frac{1}{r} \times K \times E(X, Y) \times \mathrm{e}^{i 2 \pi r / \lambda} \mathrm{d} \sigma \\
E(x, y)=\iint_{\Sigma} \frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
\end{gathered}
$$

Fresnel diffraction

$$
\begin{gathered}
\mathrm{d} E(x, y)=\frac{1}{r} \times K \times E(X, Y) \times \mathrm{e}^{i 2 \pi r / \lambda} \mathrm{d} \sigma \\
E(x, y)=\iint_{\Sigma} \frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
\end{gathered}
$$

If Z sufficienctly large:

Fresnel diffraction

$$
\mathrm{d} E(X, y)=\frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
$$

$$
E(x, y)=\iint_{\Sigma} \frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
$$

If Z sufficienctly large:

$$
\begin{aligned}
r & =\sqrt{Z^{2}+(X-X)^{2}+(Y-y)^{2}} \\
& \approx Z\left(1+0.5\left(\frac{X-x}{Z}\right)^{2}+0.5\left(\frac{Y-y}{Z}\right)^{2}\right)
\end{aligned}
$$

Fresnel diffraction

$$
\begin{gathered}
\mathrm{d} E(X, y)=\frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma \\
E(X, y)=\iint_{\Sigma} \frac{1}{r} \times K \times E(X, Y) \times e^{i 2 \pi r / \lambda} \mathrm{d} \sigma
\end{gathered}
$$

If Z sufficienctly large:

$$
\begin{aligned}
r & =\sqrt{Z^{2}+(X-x)^{2}+(Y-y)^{2}} \\
& \approx Z\left(1+0.5\left(\frac{X-x}{Z}\right)^{2}+0.5\left(\frac{Y-y}{Z}\right)^{2}\right)
\end{aligned}
$$

Fresnel Transform

$$
E(x, y)=\frac{K}{Z} e^{i 2 \pi z / \lambda} \iint_{\Sigma} E(X, Y) \exp \left(\frac{i \pi}{\lambda Z}\left((X-x)^{2}+(Y-y)^{2}\right)\right) \mathrm{d} \sigma
$$

Far-field diffraction

$$
\exp \left(\frac{i \pi}{\lambda Z}(X-x)^{2}\right) \approx \exp \left(\frac{i \pi}{\lambda Z} x^{2}\right) \times \exp \left(\frac{-i 2 \pi}{\lambda Z} x X\right)
$$

If, $\frac{x^{2}}{\lambda Z} \ll 1$.
This approximation requires the distance Z between the diaphragm and the final screen to be very large compared to the dimension of the aperture.

Fourier Transform

$$
E(x, y)=K^{\prime} \iint_{\Sigma} E(X, Y) \exp \left(-i \frac{2 \pi}{\lambda Z}(x X+y Y)\right) \mathrm{d} \sigma
$$

Compared to the Fresnel Transform, the Fourier Transform is easy to compute.

Geometric optics to the rescue

telescope

Geometric optics to the rescue

telescope

- Fun fact: a powered optics conjugates infinity to a finite distance

Geometric optics to the rescue

telescope

- Fun fact: a powered optics conjugates infinity to a finite distance
- In the focal plane of a telescope, Fraunhofer diffraction rules!

Geometric optics to the rescue

telescope

- Fun fact: a powered optics conjugates infinity to a finite distance
- In the focal plane of a telescope, Fraunhofer diffraction rules!
- Between the image and the pupil, Fresnel diffraction must be used.

The recipe for image formation

Remember the two important coherence properties?
(1) the light emitted by a point-source is self-coherent

2 sources are spatially incoherent

Here, these facts translate into:

The recipe for image formation

Remember the two important coherence properties?
(1) the light emitted by a point-source is self-coherent

2 sources are spatially incoherent

Here, these facts translate into:

(1) the E-field emitted by a point source, intercepted by the telescope is coherent

The recipe for image formation

Remember the two important coherence properties?
(1) the light emitted by a point-source is self-coherent

2 sources are spatially incoherent

Here, these facts translate into:

(1) the E-field emitted by a point source, intercepted by the telescope is coherent
(1) in the focal plane, it is the FT of the field intercepted by the pupil: $E_{f}=\mathcal{F}\left(E_{p}\right)$

The recipe for image formation

Remember the two important coherence properties?
(1) the light emitted by a point-source is self-coherent

2 sources are spatially incoherent

Here, these facts translate into:

(1) the E-field emitted by a point source, intercepted by the telescope is coherent
(1) in the focal plane, it is the FT of the field intercepted by the pupil: $E_{f}=\mathcal{F}\left(E_{p}\right)$
(1) we are only able to record the intensity associated to this source: $I_{f}=\left|\mathcal{F}\left(E_{p}\right)\right|^{2}$

The recipe for image formation

Remember the two important coherence properties?
(1) the light emitted by a point-source is self-coherent

2 sources are spatially incoherent

Here, these facts translate into:

(1) the E-field emitted by a point source, intercepted by the telescope is coherent
(1) in the focal plane, it is the FT of the field intercepted by the pupil: $E_{f}=\mathcal{F}\left(E_{p}\right)$
(1) we are only able to record the intensity associated to this source: $I_{f}=\left|\mathcal{F}\left(E_{p}\right)\right|^{2}$
(1) if other sources are present, intensity patterns add-up: $I_{12}=I_{1}+I_{2}$

Image formation

One example:

- Paying only attention to the bright stars in this image
- Each point source produces a similar pattern: spikes + halo
- The size is the same for all (apparent size -> brightness)
- These patterns add-up incoherently (intensities add-up)

Image formation: close-up

The circular unobstructed telescope

Angular resolution: aperture size

Simulation: 2.5 m diameter telescope
a wider aperture is good for:

Angular resolution: aperture size

Simulation: 2.5 m diameter telescope

Simulation: 8m diameter telescope

a wider aperture is good for:

- a better resolution (wider diameter)
- a higher sensitivity (more collecting area)

Angular resolution: aperture geometry

[Credit: NASA]

[Credit: NASA]

Angular resolution: aperture geometry

[Credit: ESA]

[Credit: ESA]

Angular resolution: aperture geometry

- One extreme geometry is the two-telescope interferometer
- It provides angular resolution only in the direction of the baseline

Our reference unit: the arc second

- For an 8-meter telescope operating in the near IR: $\lambda / \mathrm{D} \sim \mu$ radians.
- Instrument plate scales are usually expressed in milli-arc second per pixel.

convert rad <-> arc-second

$$
\begin{aligned}
\theta\left[\left[^{\prime \prime}\right]\right. & =\frac{180 \times 3600}{\pi} \times \theta[\mathrm{rad}] \\
& \simeq 206264.8 \times \theta[\mathrm{rad}]
\end{aligned}
$$

quick trick!

Estimate your resolution with:

$$
\alpha[\mathrm{mas}]=200 \times \frac{\lambda[\mu \mathrm{m}]}{D[\mathrm{~m}]}
$$

This conversion factor (often rounded to 2×10^{5}) should really be kept in mind. It happens to correspond to the scaling factor between phenomena taking place within the Solar system and those taking place outside the Solar system.

Side-note: angles and distances

In the Solar system, distances are measured in AU.
distance d (pc)

One parsec is the distance at which a projected distance of 1 AU corresponds to an angle of $1^{\prime \prime}$.
Distances to extrasolar objects are measured in parsecs (pc).

$$
\begin{aligned}
\tan 1^{\prime \prime} \sim 1^{\prime \prime} & =1 \mathrm{AU} / 1 \mathrm{pc} \\
\theta\left[^{\prime \prime}\right] & =1 / \mathrm{d}[\mathrm{pc}] \\
1 \mathrm{pc} & =204264.8 \mathrm{AU}
\end{aligned}
$$

Imaging extrasolar planets?

[exoplanet.eu]

The high-contrast problem

Ideal PSF image

The high-contrast problem

Ideal PSF image

The high-contrast problem

Ideal PSF image

The high-contrast problem

Ideal PSF image

Radial profile

part 1: apodization

To apodize: to chop off the foot!

- the rings (feet) of the PSF are created by the pupil hard edge
- modify the pupil transmission profile to attenuate or erase these rings!

part 1: apodization

To apodize: to chop off the foot!

- the rings (feet) of the PSF are created by the pupil hard edge
- modify the pupil transmission profile to attenuate or erase these rings!

part 1: apodization

To apodize: to chop off the foot!

- the rings (feet) of the PSF are created by the pupil hard edge
- modify the pupil transmission profile to attenuate or erase these rings!

PSF horizontal profile

part 2: coronagraph

part 2: coronagraph

[Image by O. Lardière]

part 2: coronagraph

[Image by O. Lardière]
[Image by O. Lardière]

part 2: coronagraph

[Image by O. Lardière]
[Image by O. Lardière]
Optically replicate the eclipse phenomenon

possible implementation scheme

instrument pupil focus
final focus

possible implementation scheme

instrument pupil focus

possible implementation scheme

possible implementation scheme

$$
\begin{array}{llll}
P_{1}(x, y) & F_{1}(\alpha, \beta) & F_{2}(\alpha, \beta) & P_{2}(x, y)
\end{array} P_{3}(x, y)
$$

instrument pupil focus
final focus

important remarks

- far-field diffraction applies: Fourier Transform between planes
- elements of the coronagraph interact with the E-field
- final detector records intensity
- because it misses the focal plane mask, off-axis light is mostly unaffected

the coronagraphic formalism

- pupil coords: (x, y) - image coords: (α, β)
- apodization function: $A(x, y)$
- focal plane mask function: $M(\alpha, \beta)$
- lyot-stop function: $L(x, y)$
- \mathcal{F} means Fourier Transform

the coronagraphic formalism

- pupil coords: (x, y) - image coords: (α, β)
- apodization function: $A(x, y)$
- focal plane mask function: $M(\alpha, \beta)$
- lyot-stop function: $L(x, y)$
- \mathcal{F} means Fourier Transform
- $P_{1}=A$
- $F_{1}=\mathcal{F}\left(P_{1}\right)$
- $F_{2}=M \times F_{1}$
- $P_{2}=\mathcal{F}^{-1}\left(F_{2}\right)$
- $P_{2}=\mathcal{F}^{-1}\left(M \times F_{1}\right)$
- $P_{3}=P_{2} \times L$
- $F_{3}=\mathcal{F}\left(P_{3}\right)$
$>F_{3}=\mathcal{F}\left(P_{2}\right) \otimes \mathcal{F}(L)$
- $F_{3}=\left(F_{1} \times M\right) \otimes \mathcal{F}(L)$
- $F_{3}=(\mathcal{F}(A) \times M) \otimes \mathcal{F}(L)$
- $I_{3}=\left|F_{3}\right|^{2}$

the coronagraphic formalism

- $P_{1}=A$
- $F_{1}=\mathcal{F}\left(P_{1}\right)$
- $F_{2}=M \times F_{1}$
- $P_{2}=\mathcal{F}^{-1}\left(F_{2}\right)$
- $P_{2}=\mathcal{F}^{-1}\left(M \times F_{1}\right)$
- pupil coords: (x, y) - image coords: (α, β)
- apodization function: $A(x, y)$
- focal plane mask function: $M(\alpha, \beta)$
- lyot-stop function: $L(x, y)$
- \mathcal{F} means Fourier Transform
- $P_{3}=P_{2} \times L$
- $F_{3}=\mathcal{F}\left(P_{3}\right)$
- $F_{3}=\mathcal{F}\left(P_{2}\right) \otimes \mathcal{F}(L)$
- $F_{3}=\left(F_{1} \times M\right) \otimes \mathcal{F}(L)$
- $F_{3}=(\mathcal{F}(A) \times M) \otimes \mathcal{F}(L)$
- $I_{3}=\left|F_{3}\right|^{2}$

Many variants of coronagraphs exist and it is easy to get carried away looking for the perfect solution: they all share the same weakness!

