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ABSTRACT

Context. Isotopic properties of meteorites provide evidence that multiple dust trap or pressure bumps had to form and persist in the
inner Solar System on a timescale of millions of years. The formation of a pressure bump at the outer edge of the gap opened by
Jupiter would be effective in blocking particles drifting from the outer to the inner disc. Yet this would not be enough to preserve dust
in the inner disc. However, in low-viscosity discs and under specific conditions governing the gas cooling time, it has been shown
that massive planets can also open secondary gaps, separated by density bumps, inwards of the main gap. The majority of studies of
the process of secondary gap formation have been done in two dimensional equatorial simulations with prescribed disc cooling or by
approximating the cooling from the disc photosphere. Recent results have shown that an appropriate computation of the disc cooling
by including the treatment of radiation transport is key to determining the formation of secondary gaps.
Aims. Our aim is to extend previous studies to three dimensional discs by also including radiative effects. Moreover, we also consider
non-ideal magnetohydrodynamic effects in discs with a prescribed cooling time to explore the feedback of the magnetic field on
secondary gap formation.
Methods. We performed three dimensional hydrodynamical numerical simulations with a self-consistent treatment of radiative effects
making use of a flux-limited diffusion approximation. We then extended our study to a similar disc including the magnetic field and
non-ideal Ohmic and ambipolar effects.
Results. We show that in the hydrodynamical model, a disc with low bulk viscosity (αν = 10−4) and consistent treatment of radiative
effects, a Jupiter-mass planet is capable of opening multiple gaps. We also show that multiple gaps and rings are formed by planetary
masses close to the pebble isolation mass. In the presence of non-ideal MHD effects, multiple gaps and rings are also formed by a
Jupiter-mass planet.
Conclusions. A solid Jupiter core in low-viscosity discs blocks particles drifting towards and within the inner disc. The formation
of multiple gaps and rings inside the planetary orbit at this stage is crucial to preserving dust reservoirs. Such reservoirs are pushed
towards the inner part of the disc during Jupiter runaway growth and they are shown to be persistent after Jupiter’s growth. Multiple dust
reservoirs could therefore be present in the inner Solar System since the formation of Jupiter’s solid core when the disc is characterised
by low viscosity.

Key words. accretion, accretion disks – hydrodynamics – magnetohydrodynamics (MHD) – protoplanetary disks –
planet-disk interactions

1. Introduction

Meteorites are divided into two broad categories: chondrites
and achondrites (with iron meteorites included in the latter).
The parent bodies of achondrites formed in the first megayear
(Myr) of the Solar System’s existence. They contained a large
abundance of short-lived radioactive elements, whose decay lib-
erated enough energy to melt these bodies (Neumann et al. 2012).
Under the effect of gravity, these bodies then differentiated into
an iron core, a silicate mantle and a crust, akin to the structure of
asteroid 4 Vesta. The parent bodies of chondrites formed later,
so that most short-lived radioactive atoms had already decayed.
Consequently, the energy liberated in their interior was not as
high; temperatures increased significantly, up to several hundred
degrees, but not enough to cause melting. Thus, these bodies pre-
served their original petrological structure, made of chondrules
and matrix and refractory inclusions. From measurements of the

⋆ Corresponding author.

ages of formation of the individual chondrules, the chondrite par-
ent bodies formed approximately 2–4 My after the beginning
of the Solar System (Fukuda et al. 2022; Piralla et al. 2023).
The formation of planetesimals so late in the history of the pro-
toplanetary disc is problematic, because dust particles (i.e. the
individual chondrules, or the matrix grain aggregates) tend to
drift radially towards to Sun on a timescale that is much shorter
than a million years. We might consider that the dust lost by
radial drift at a given location was substituted by dust drifting
from larger radial distances in the disc; however, this simple view
is negated by another crucial observation in meteorite science.
The analysis of nucleosynthetic isotopic anomalies inherited
from the interstellar medium reveals that both chondrites and
achondrites are distinguished into two distinct groups, dubbed
CC – as the measured anomalies are like those of carbonaceous
chondrites – and NC – as the anomalies are like those of non-
carbonaceous chondrites (Warren 2011; Kruijer et al. 2017). The
existence of an isotopic dichotomy such as that described above
implies that the objects of the NC and CC groups formed at
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different locations of the disc, incorporating distinct materials.
Because CCs exhibit evidence of prominent water alteration,
whereas the isotopic properties of NC meteorites are similar
to those of Earth and Mars, the common interpretation is that
the NC bodies (both achondrites and chondrites) formed in the
inner Solar System and the CC bodies (again both achondrites
and chondrites) formed in the outer Solar System, where water
could be accreted in solid form (Kruijer et al. 2017; Nanne et al.
2019). An implication of these considerations is that the mate-
rial that formed the NC chondrites in the inner Solar System at a
later time could not have drifted from the outer disc; otherwise
it would have exhibited CC isotopic properties. The formation of
Jupiter, opening a gap in the disc (Kruijer et al. 2017), or the for-
mation of a pressure bump near the snowline (Brasser & Mojzsis
2020) must have blocked the drift of particles from the outer
disc to the inner disc. Again, meteorites provide evidence that
only particles smaller than 200 microns could pass through such
dynamical barriers, with negligible effect on the overall mass
balance (Haugbølle et al. 2019).

Thus, in the absence of a refilling mechanism, the NC dust in
the inner part of the protoplanetary disc had to survive for mil-
lions of years without drifting into the Sun. This would require
the existence of a pressure bump in the disc where dust could be
trapped. A pressure bump may be generated near 1 au if the disc
evolves primarily under the effects of magnetised winds and if
the mass removal rate in these winds increases with decreasing
heliocentric distance (Suzuki et al. 2010; Ogihara et al. 2018).
The existence of a unique pressure bump, however, is not com-
pletely satisfactory (Kleine et al. 2020; Schneider et al. 2020).
Four kinds of NC chondrites exist, with somewhat different
isotopic anomalies: the prominent ordinary and enstatite chon-
drite groups, followed by the Rumuruti (R) and Kakangari (K)
groups, which are represented to a lesser extent in the mete-
orite collections. Together with the fact that Enstatite chondrites
have essentially identical isotopic properties of a class of NC
achondrites called Aubrites, this implies that the dust did not get
completely mixed up, even on a timescale of millions of years.
This strongly suggests that it was not one, but several pressure
bumps, which had to form and persist in the inner part of the
protosolar disc.

Multiple rings of dust are observed in protoplanetary discs
(Andrews et al. 2018), suggestive of a multitude of pressure
bumps. A long-debated question is whether the formation of
these pressure bumps is due to the formation of massive plan-
ets opening gaps in the disc (Bae et al. 2017) or to spontaneous
non-ideal magnetohydrodynamic (MHD) effects (Béthune et al.
2017; Riols & Lesur 2018; Cui & Bai 2021). We remark that
spontaneous generation of rings has been obtained (by Béthune
et al. 2017; Riols & Lesur 2018; Cui & Bai 2021) in cases where
ampipolar diffusion is the dominant non-ideal effect. This result
suggests that such rings would not not form in the inner disc
because the MHD dynamics there is thought to be dominated
by Hall and Ohmic dissipation, rather than ambipolar diffusion
(Armitage 2011).

The rings are observed only in the outer part of protoplan-
etary discs and, due to resolution effects, it is not possible to
assess observationally whether they are common also in the inner
part. Also, none of the terrestrial planets was massive enough to
open a gap in the disc, even if already present with its current
mass, because their Hill sphere is much smaller than the vertical
scale height of the disc. Therefore, Jupiter remains the main sus-
pect for the potential formation of rings in the inner disc. Jupiter
obviously forms a prominent pressure bump outside of the main
gap that opens along its orbit, but this is of no help with respect

to the preservation of dust in the inner system. It has been shown,
however, that massive planets can also open secondary gaps, sep-
arated by density bumps, also inwards of the main gap (Bae et al.
2016, 2017; Miranda & Rafikov 2020a).

Most studies of the process of secondary gap formation have
been conducted in 2D equatorial simulations (Bae et al. 2017;
Zhang et al. 2018; Miranda & Rafikov 2019, 2020a; Ziampras
et al. 2023) and show that three necessary conditions have to be
met: (i) the disc must have a very small effective turbulent vis-
cosity; (ii) the disc cooling time normalised by the local orbital
frequency, denoted βc, has to be either small (βc < 0.01) or large
(βc > 10) (Miranda & Rafikov 2020a; Ziampras et al. 2023); and
(iii) the planet must be massive enough (with the mass depending
on the disc’s viscosity, βc, and on the disc’s scale height.

Including a prescription of radiative effects gives the appro-
priate cooling time associated to disc properties and is a nec-
essary step in capturing the dynamics of the formation of
secondary gaps in specific discs. Taking into account the cool-
ing from the disc surface (Ziampras et al. 2020) and adding
radiation transport along the disc midplane (Miranda & Rafikov
2020a; Ziampras et al. 2023) have improved the treatment of disc
thermodynamics in 2D simulations. However, a self-consistent
treatment of radiative effects in 3D simulations of secondary
gap opening has not yet been considered. To our knowledge, the
only 3D simulations with an appropriate βc from disc surface
irradiation and a Jupiter-mass planet in a massive, inviscid pro-
toplanetary disc were presented in Bae et al. (2016). This work
indicated several waves in the disc’s surface density distribution
inwards of Jupiter’s orbit. The authors, however, did not perform
an analysis of the pressure profile in the disc to verify whether
dust-trapping pressure bumps formed.

Given the relevance of this problem to understand the for-
mation of different classes of NC chondrites, we present an
exploration of the capability of Jupiter to form multiple dust-
trapping rings in the inner Solar System using a self-consistent
treatment of radiative effects in a disc with low bulk viscosity.
Moreover, since low-viscosity discs transport gas towards the
star at a very low rate with respect to typical accretion rates
observed in young stars (Hartmann et al. 1998; Manara et al.
2016), we decided to extend our model by including non-ideal
MHD effects. In this case, accretion flow onto the star is obtained
by angular momentum removal by disc winds (Béthune et al.
2017; Lesur 2021b) and our aim is to explore the feedback of the
magnetic field on secondary gap formation.

The paper is organised as follows. In Section 2, we present
our simulation tools and methods. In Section 3, we reproduce
the work of Bae et al. (2016) and compute the pressure profile
on the midplane. In Section 4, we present a different simulation,
where we adopt a density comparable to the minimum mass solar
nebula at the planet location, instead of the massive disc used by
Bae et al. (2016). In addition, we compute βc self-consistently
using flux-limited energy diffusion. In Section 5, we extend our
model including non-ideal MHD effects. Finally, in Section 6,
we progressively reduce the mass of the planet to see at which
mass a planetary core might have started to form dust-trapping
rings in the inner Solar System.

2. Models

2.1. Physical model

The protoplanetary disc (PPD hereafter) is treated as a non-self-
gravitating gas whose motion is described by the Navier-Stokes
equations. We used two grid-based codes: the fargOCA code
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(Lega et al. 2014), which integrates a full energy equation
taking into account viscous heating and radiative cooling and
the FARGO3D code (Benítez-Llambay & Masset 2016), which
includes non-ideal MHD effects. The two codes are very simi-
lar in the sense that they use the same hydrodynamical solvers
based on the operator splitting procedure (Stone et al. 1992) and
they both benefit from the FARGO algorithm (Masset 2000) for a
computation of the time step suited to gas rotating with quasi-
Keplerian motion. The reason for the use of the two codes solely
depends on the different physical modules that they implement.

In both cases, we used spherical coordinates (r, θ, φ), where
r is the radial distance from the star (which is at the origin of
the coordinate system), θ the polar angle measured from the z
axis (the colatitude), and φ is the azimuthal coordinate measured
from the x axis. The midplane of the disc is located at the equa-
tor, θ = π2 . We are working in a coordinate system that rotates
with the angular velocity of a planet of mass, mp,

Ωk =

√
G(M⋆ + mp)

rp
3 ,

where M⋆ is the mass of the central star, G is the gravitational
constant, and rp is the semi-major axis of a planet assumed to be
on a circular orbit. We consider a planet orbiting a Solar mass
star and, therefore, in the following, we refer to the mass of the
star as M⊙.

The dynamics of the gas is provided by the integration of
the Navier-Stokes equations composed by a continuity equation
and a set of three equations for the momenta (Lega et al. 2014;
Benítez-Llambay & Masset 2016). Additionally, we consider the
gas internal energy density as e = ρcvT , where ρ and T are the
gas volume density and the gas temperature, while cv is the spe-
cific heat at constant volume. The equation of state is that of
an ideal gas of pressure of P = (γ − 1)e with adiabatic index of
γ = 1.4. In the following, we use either of two prescriptions for
the integration of the energy equation:
1. Changes in the internal energy density e are due to adia-

batic (de)compression, viscous heating, (Mihalas & Mihalas
1984) and a relaxation to the initial temperature, T0, on a
cooling timescale of τc = βcΩ

−1
k ,

∂te + ∇ · (ev) = −P∇ · v + Q+ − ρcv
(T − T0)
τc

, (1)

where v is the gas velocity, while the terms −P∇ · v and
Q+ ≡ ¯̄τ∇v are the compressional and viscous heating (¯̄τ
is the viscous stress tensor defined in Mihalas & Mihalas
1984), respectively. The dimensionless cooling time βc is
either a constant parameter or a function depending on disc
properties, as described below.

2. We consider the evolution of the internal energy and of
the thermal radiation energy, Er (code fargOCA), in the
flux-limited diffusion approximation (FLD, Levermore
& Pomraning 1981) using the so-called two temperature
approach (Commerçon et al. 2011), expressed as{
∂tEr − ∇ · F = ρκpc(arT 4 − Er),
∂te + ∇ · (ev) = −P∇ · u − ρκpc(arT 4 − Er) + Q+, (2)

where F = cλ
ρκr
∇Er is the radiation flux vector and λ the flux

limiter (Kley et al. 2009). We use κp and κr to indicate the
Planck and the Rosseland mean opacity, respectively, with
ar as the radiation constant and with c as the speed of light.

In this paper, we consider κ = κp ≡ κr (see Bitsch et al.
2013) and use the opacity law of Bell & Lin (1994), where
a dust to gas ratio of 0.01 is assumed.

We did not include the irradiation heating from the
central star, so that we could reduce the computational cost
with no significant impact on the gas dynamics in the planet
vicinity (see Lega et al. 2015). However, we did consider
low-viscosity disc with stellar irradiation as the main source
of heating. Therefore, in our 3D simulations, we mimicked
the thermal equilibrium structure obtained in discs heated
by the star, by suitably fixing the disc surface temperature
(see Section 4 and Lega et al. 2024). When considering the
energy evolving according to Eq. (2), the disc cooling time,
βc, fully depends on the disc properties and can be estimated
a posteriori as explained below. In the following we refer to
simulations as “fully radiative” with the above prescription
for the energy computation.

2.2. Cooling time approximation

When computing an energy equation with temperature relaxing
towards the initial values (Eq. (1)), it is customary to consider
the cooling time, βc, as a constant parameter (see e.g. Miranda &
Rafikov 2020b; Ziampras et al. 2023). However, when studying
specific discs (or aiming to make comparisons to the observed
disc structures), it is important to compute the cooling time from
disc properties (Zhang et al. 2018; Miranda & Rafikov 2020a;
Ziampras et al. 2023).

2.2.1. Cooling through disc surfaces

The cooling process occurs through blackbody emission of
dust grains. In vertically integrated discs the radiative cooling
power per unit surface is given by Menou & Goodman (2004),
expressed as

Qcool = −
σT 4

τe f f
,

where σ = arc/4 and τe f f is the effective optical depth (Hubeny
1990), expressed as

τe f f =
3
8
τ +

√
3

4
+

1
4τ
,

to take into account the optically thick and thin limits, while τ =
1/2κΣ is the optical depth at disc midplane.

The discs cools through surfaces and, following Ziampras
et al. (2020) the surface cooling time can be written as

β
sur f
c = ΩK

ΣcvT
|2Qcool|

≡ ΩK
Σcvτe f f

2σT 3 . (3)

The formula has been extended to a three dimensional (3D)
disc by Lyra et al. (2016) by considering the radiative timescale
tr = e

∇·F (with e and F defined in Eq. (2)) and integrating over a
spherical volume of radius, H1,

βH
c = ΩK

ρcvHτe f f

3σT 3 . (4)

In this case, the optical depth τe f f is computed for grid cells at
height z above (below) the midplane as τ(z) =

∫ zmax

z ρ(z′)κ(z′)dz′(
τ(z) =

∫ z
zmin
ρ(z′)κ(z′)dz′

)
.

1 The integral form is preferred to avoid the computation of the
divergence.
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2.2.2. In-plane cooling

Dust grains emission actually occurs in all directions, namely,
the radiative flux has also a radial component in addition to
the previously described surface cooling. A detailed study on
the role of the radial radiative flux or in-plane cooling on the
evaluation of the cooling timescale was performed by Miranda
& Rafikov (2020a) and Ziampras et al. (2023) based on two-
dimensional (2D) vertically integrated disc models. In those
papers, an effective cooling time scale was obtained by com-
bining the surface cooling of Eq. (3) and the in-plane cooling
obtained considering heat diffusion through the mid-plane by
Miranda & Rafikov (2020a). The results obtained underline the
importance of considering the in-plane cooling component, sug-
gesting that a study of 3D discs with heat diffusion from the
FLD approximation is required to evaluate thermal processes and
correctly estimate the cooling time, βc.

2.3. Cooling time in 3D discs with FLD approximation

When dealing with Eq. (2), heat diffusion is fully taken into
account by computing the radiation flux on every grid-cell at
any time, t. The cooling time can therefore be derived a poste-
riori from the timescale over which radiation is diffused over a
typical length scale, lr,

βc = ΩK
l2r
Dr
, (5)

where Dr is the radiative diffusion coefficient of a grid cell
at time, t. In the optically thick limit, the diffusion coefficient
associated with the radiation flux vector in Eq. (2) is

Dr =
16σT 3

3cvρ2κ
, (6)

where we consider Er = arT 4 and λ = 1/3. Although Eq. (5)
overestimates the cooling time in the optically thin regions, we
chose to keep this expression since typical discs are optically
thick in the planet’s formation region near the midplane.

By considering the disc scale height, H, as the characteristic
diffusion length scale , we obtain (see also Miranda & Rafikov
2020a; Ziampras et al. 2023) the following expression,

βc = ΩK
3cvρ2κH2

16σT 3 . (7)

We computed this quantity to compare the results obtained with
the energy evolving with FLD approximation to those obtained
with Eq. (1). We remark that the cooling time obtained from dif-
fusion Eq. (7) in an optically thick disc is similar to the cooling
from the disc’s photosphere, as given in Eqs. (3) and (4).

2.4. Non-ideal magnetic effects

To include MHD effects (with the code FARGO3D) , we also con-
sidered the induction equation for the evolution of the magnetic
field, B, as

∂t B = ∇ × (u × B − ηO J + ηA J × eb × eb). (8)

With respect to the pure hydrodynamical case, the equation for
the momenta have an additional source term, J × B (Benítez-
Llambay & Masset 2016), where J ≡ ∇ × B is the electric
current.

The terms ηO and ηA are the Ohmic and ambipolar diffusivi-
ties and eb is the unit vector parallel to the magnetic field line. We
chose not to consider the Hall effect for the following reasons: (i)
Ohmic resistivity is considered dominant in the region of inter-
est near the midplane where the density is high; in addition, it
was recently supposed that it is dominant even at low density
values (Hopkins et al. 2024); (ii) to our knowledge, spiral arm
propagation in MHD discs has not yet been investigated, so that
we chose a relatively simple setting; (iii) finally, from the com-
putational point of view, 3D MHD simulations with embedded
planets are extremely expensive and Hall effect can contribute to
further decreasing the time step that would make the integration
of the system for about 100 planetary orbits prohibitive.

Following Lesur (2021b) and Wafflard-Fernandez & Lesur
(2023), we prescribed the Ohmic and ambipolar profiles instead
of considering a model for ionisation that would also make
the 3D computations extremely expensive. We considered the
dimensionless Ohmic Reynolds number, RO, and Elsasser num-
ber, ΛA, defined at disc midplane via

ΛA(0) ≡
v2A
ηAΩk

RO(0) ≡
ΩK H2

ηO
,

where vA = B/
√
ρµ0 is the Alfvén velocity. According to Lesur

(2021b) and Wafflard-Fernandez & Lesur (2023), we can con-
sider the gas to be fully ionised in the corona. This is set
via

ΛA(z) = max
ΛA(0) exp

[
z4

(ξH)4

]
,

1
10
v2A
c2

s

 ,
RO(z) = RO(0) exp

[
z4

(ξH)4

] (
ρ(0)
ρ(z)

)
,

where ξ quantifies the thickness of the non-ideal layer in units of
the pressure scale height H (ξ = 3 in our simulations).

We noticed that the models used to compute the Ohmic and
ambipolar coefficients, while taking into account the ionisation
of gas and chemical models (Gressel et al. 2015; Béthune et al.
2017; Bai 2017; Lesur 2021b,a), do not provide a clear consensus
on the values of the strength of non-ideal effects. This is mainly
due to a strong uncertainty about the ionisation rate from cosmic
rays (the main source of ionisation below two scale heights) and
on the size and abundance of grains in discs that tend to reduce
the ionisation fraction.

In the simulations presented in Section 5, we considered
RO = 1 and different values of ΛA ∈ [0.01 : 10]. This choice
is motivated by the fact that values of RO ∼ O(1) and strong
(ΛA ∼ 0.01) to weak ambipolar diffusion (ΛA ∼ 10) are plau-
sible (Gressel et al. 2015; Béthune et al. 2017; Bai 2017) in the
region of the protoplanetary disc considered in this paper.

2.5. Disc models

The code units are such that G = M∗ ≡ M⊙ = 1 and the
unit of distance r0 is arbitrary. The unit of time is therefore
(r0/au)3/2/(2π) yr. For the simulations we adopt as the unit of
length r0 = 5.2 au except for the MHD case for which r0 = 1 au.
Planets are considered, in all cases, at a position of rp = 5.2 au.
We call T0 the orbital period at r = r0. The simulations’ domain
extend radially from rmin to rmax and vertically from the colati-
tude θ0 to the midplane at θ = π/2. We consider discs with radial
profile of surface density Σ(r) = Σ0(r/r0)−αΣ . The values of these
parameters as well as simulation names are reported in Table 1.
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Table 1. Disc model parameters.

Name Σ0/M⊙r−2
0 αΣ (H/r)rp rmin/r0 rmax/r0 θ0 αν (Nr,Nφ,Nθ)

HDBae 2.3 × 10−3 1.5 0.05 0.2 1.5 1.36 0 (726, 754, 72)
HDradJ, HDradS, HDrad30 6.67 × 10−4 1.07 0.03 0.3 3.5 1.48 10−4 (528, 554, 52)
HDiso, HDβ, HDadia 6.67 × 10−4 1.07 0.03 0.2 3.5 1.48 10−4 (658, 650, 62)
MHD 1.3 × 10−4 1 0.05 0.3 10.0 0.56 0 (384, 800, 64)

Notes. In the MHD case, we ran six simulations by varying the intensity of the magnetic field and the strength of the ambipolar diffusion. The
MHD simulations share the same disc parameters as defined in the table, therefore, we kept each unique name and explicitly provided the values
of ΛA and of the strength of the magnetic field (see Section 5).

Table 2. Boundary conditions.

Name Radial Vertical

HDBae Damping Open
HDrad Damping Reflecting1

HDiso , HDβ, HDadia Damping Reflecting
MHD see Appendix C see Appendix C

Notes. The boundaries in the table refer only to the gas fields. 1In the
fully radiative case, the temperature at the disc surface is provided by
the equilibrium between stellar heating and radiative cooling (see Sec-
tion 4). This equilibrium temperature is used for the computation of
both the internal and the radiative energy densities. In the MHD simula-
tions, additional boundary conditions for the magnetic field and the emf
are required. We report the details in Appendix C. All the simulations
presented in this paper run on one single hemisphere. Therefore, the
vertical boundaries refer to disc’s surface. On midplane, we use mirror
boundary conditions.

The fully radiative simulations are named HDrad followed by J,
S , and 30, for planets of respectively the mass of Jupiter, of Sat-
urn, and of a super-Earth of 30 Earth masses. We considered
non-zero α viscosity described by the parameter αν for the whole
set of hydro-dynamical simulations – except HDBae. In the MHD
simulations, angular momentum is transported by the magnetic
field without the need to prescribe a viscosity (e.g. of turbulent
origin).

Other parameters such as the boundary conditions and the
numerical resolution do also depend on the simulation (specified
in Table 2). In the azimuthal direction we use periodic boundary
conditions. The label “damping” refers to the implementation of
a wave damping region according to de Val-Borro et al. (2006).
The radial grid spacing is logarithmic, the azimuthal one is con-
stant, while the vertical spacing is constant except for the MHD
simulations for which we use a nonuniform grid. The reason for
this is attributed to magnetic effects, such as winds, developing
on a large vertical domain and a non-uniform grid meeting the
requirements of having a moderate total number of grid cells
together with a suited resolution (∼8 grid cells) over a disc scale
height above the midplane. Precisely, our grid has constant reso-
lution from the midplane up to one scale height and then it varies
quadratically with a maximum resolution ratio of 4. Moreover,
in the case of MHD simulations additional boundary conditions
are required for the magnetic field and for the electromotive field
(EMF). We report the details in Appendix C.

2.6. Discs with embedded planets: Numerical procedure

In all the simulations, we considered a planet on a fixed circular
orbit located on the midplane at rp = 5.2 au (i.e. rp = r0 for all

the simulations – except the MHD ones, for which rp = 5.2r0
with r0 = 1 au) and azimuth of φ = 0; or, equivalently, at
(xp, yp, zp) = (5.2, 0, 0) au. We embedded in each disc model
a planet of 20 Earth masses at t = 0 and smoothly increased
this value over a time interval of 10 or 20 orbits until the mass
until the final mass was reached. The fully radiative and MHD
cases require preliminary 2D (r, θ) simulations to reach an equi-
librium configuration prior to the planet insertion. This phase is
described in the corresponding sections.

The gravitational potential of the planet acting on the disc
(Φp) is modelled as in Kley et al. (2009) in the fargOCA code: the
full gravitational potential is computed for disc elements having
distance, d, from the planet larger than a fraction, ϵ, of the Hill
radius, while it is smoothed for disc elements with d < rsm ≡

ϵRH according to

Φp =

 −mpG
d d > rsm

−
mpG

d f
(

d
rsm

)
d ≤ rsm

, (9)

with f
(

d
rsm

)
=

[(
d

rsm

)4
− 2

(
d

rsm

)3
+ 2 d

rsm

]
.

In FARGO3D the potential is smoothed according to

Φp = −
mpG√

(d2 + r2
sm)
. (10)

We recall that the Hill radius is defined as: RH = rp(mp/3M⊙)1/3.
The values of ϵ are respectively (0.13, 0.2, 0.1) in simulation sets
(HDBae,HD,MHD).

3. Hydrodynamical case with prescribed cooling

The only 3D simulation, to our knowledge, which shows the
formation of multiple rings and gaps inside the orbit of a Jupiter-
mass planet is the one in Bae et al. (2016). This paper was mainly
devoted to the study of spiral waves induced by a massive planet;
however, it offers an important starting point for our study. The
aim of this section is to produce a simulation similar to the one
presented in Section 4.2 of Bae et al. (2016) and to check whether
the density maxima that form inside the Jupiter’s orbit corre-
spond to pressure bumps with the ability of stopping dust from
drifting inwards.

Although we did not consider dust dynamics in our simu-
lations, we noticed that dust velocity would be affected by the
gas drag. Thus, by introducing a radial dust velocity, ur, we have
(Nakagawa et al. 1986; Takeuchi & Lin 2002):

ur =
vr

1 + S 2
t
− 2S tηvK , (11)

where S t is the Stokes number, namely, the value of the fric-
tion timescale in units of the orbital frequency, and η is the
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Fig. 1. HDBae simulation. 2D distribution in the (r, φ) plane of the mid-
plane density, ρ, normalised over the azimuthally averaged value < ρ >
at t = 10 orbits when the planet has just reached a Jovian mass. For the
purposes of comparison with Fig. 6 of Bae et al. (2016), the y axis is
plotted using a logarithmic scale.

fraction of the Keplerian velocity, vK , corresponding to the
headwind experienced by dust particles,

η = −
1
2

(H
r

)2 ∂ log P
∂ log r

. (12)

Neglecting the gas radial velocity, vr, which is expected to be
low, a negative derivative of the pressure with respect to r corre-
sponds to η > 0 so that the dust moves toward the star; whereas
for a positive pressure gradient (η < 0) the situation is reversed.
A dust trap is located at the pressure maximum where η = 0.

In locally isothermal discs, P = c2
sρ; whereas for more

generic equations of state (EoS), we have P = (γ − 1)e. The
disc we considered in the HDBae simulation was initialised with
a locally isothermal pressure, giving a value of η in the unper-
turbed disc of 0.003 (considering the parameters in Table 1).

In our HDBae simulation, we considered a non-viscous disc,
along with Eq. (1) for the time evolution of the internal energy
density as in Bae et al. (2016). However, we did not imple-
ment the computation of βsur f

c from Eq. (4) and we considered
a constant prescribed βc corresponding to βc ∼ 100 ∼ βH

c (see
Eq. (4)) obtained by Bae et al. (2016) at the midplane at the planet
location.

In Fig. 1 we show the midplane density in the (r, φ) plane
when the planet has just reached its final mass. Multiple spiral
arms are clearly shown (cf. Fig. 6 of Bae et al. 2016).

We considered the same snapshots of Fig. 5 of Bae et al.
(2016). We show in Fig. 2, the azimuthally averaged surface

Fig. 2. Top panel: azimuthally averaged surface density profile for sim-
ulation HDBae. Bottom panel: azimuthally averaged η parameter. The
planet is kept on a fixed circular orbit at r/rp = 1 and the ticks on the
x axis (as well as the vertical black lines) indicate the values of η ∼ 0
with a positive slope. The horizontal black line corresponds to η = 0.
The damping region extends radially from rmin/r0 to the dot dashed line.

density profile (top panel) and the η profile (bottom panel). In
addition to the first bump at the gap’s inner edge (at about
r/rp = 0.7), another density maximum associated to a pressure
bump is located at r/rp = 0.54 and a third maximum at about
0.4, where η gets close to zero. Two additional pressure max-
ima appear inside r/rp = 0.37, but they do not correspond to
rings. Specifically, in Fig. 3, we see the perturbed surface den-
sity plotted in the same snapshots of Fig. 2, indicating that the
averaged maxima correspond to rings extending over the full
disc in azimuth (excluding the two innermost maxima, which
correspond to vortices).

In conclusion, a Jupiter-mass planet can form multiple rings
and gaps inside its orbit in a non-viscous disc. Such rings are
effective pressure bumps and can potentially stop dust from drift-
ing towards the star. We stress the term ‘potentially’ because η is
computed from the azimuthally averaged pressure and the actual
response of dust to non-axisymmetric features (e.g. spiral waves)
ought to be investigated in a future work.

4. Hydrodynamical case with complete treatment of
radiative transport

The aim of this section is to study the propagation of den-
sity waves with a self-consistent treatment of radiation transport
within the FLD approximation. With respect to the study pre-
sented in Bae et al. (2016) (and revisited in Section 3) we also
considered a non-zero viscosity. In fact, discs have a low (but
non-zero) bulk viscosity, as evidenced by observations (Pinte
et al. 2016; Villenave et al. 2022) and supported by mechanisms
such as the vertical shear instability (Nelson et al. 2013) leading
to low viscosity in dead zones of the discs (where viscosity is
not sustained by magnetorotational instability). The value of the
alpha parameter αν is expected to be lower than 10−3 and possi-
bly take values of the order of 10−4. In the following, we consider
αν = 10−4.

Before inserting the planet, we ran a 2D axisymmetric (r, θ)
simulation until the disc reaches thermal equilibrium. We notice
that the main source of heating in a low-viscosity disc is the
stellar heating. To recover the temperature profile of a stellar

A45, page 6 of 15



Lega, E., et al.: A&A, 702, A45 (2025)

Fig. 3. Perturbed surface density of the HDBae simulation at the same snapshots represented in Fig. 2. The dashed lines indicate the radial position
of the pressure bumps, i.e. the values of r for which η = 0 in Fig. 2. The dot-dashed line indicates the boundary of the damping region.

Fig. 4. Disc cooling time, density, and opacity in the (R,Z) ≡
(r sin(θ), r cos(θ)) plane of the disc in thermal equilibrium before the
insertion of the planet.

irradiated disc, we ran a 2D (r, θ) simulation, including the heat-
ing from a Solar-type star and using the temperature values of
the resulting equilibrium disc as boundary for our 3D disc at the
disc’s surface (as described in Lega et al. 2024). The equilibrium
disc is flared (with flaring index 2/7) and has an aspect ratio of
0.03 at rp. The density slope, αΣ, (see Table 1) was chosen on the
basis of a disc with constant star accretion rate (Lega et al. 2015).
The mass flow carried by the disc was set to be Ṁ ∼ 10−9M⊙/yr,
which is about one order of magnitude smaller than the typical
accretion rate observed in young stars (Hartmann et al. 1998;
Manara et al. 2016). We recovered typical star accretion rates by
including non-ideal MHD effects (described in Section 5).

Figure 4 shows the values of the equilibrium disc cooling
time, density, and opacity in the (R,Z) plane. When looking at
values of βc in Fig. 4 (left panel), the disc can be divided in two
main regions based on the iso-contour line, log βc = 1. Specif-
ically, inside the contour of log βc = 1 (Fig. 4, left panel), the
cooling time values correspond to the regime of density wave
propagation referred to as ‘adiabatic’ in Miranda & Rafikov
(2020a) (see their Fig. 4). When inserting a planet in this region,
we expect to find a gap at the planetary orbit and multiple rings
and gaps in the inner region. Near the log βc = 1 contour, den-
sity waves are expected to be radiatively damped (see Ziampras
et al. 2023). Finally, for log βc ≪ 1, the disc is in the locally
isothermal regime. This regime is found near the disc surface, far
from the planet’s forming region. We remark that the βc values
are expected to change with time according to the perturbation
introduced by the planet; thus, wave propagation regimes can be
modified accordingly.

4.1. Jupiter-mass planet

Starting from the (R,Z) disc in thermal equilibrium, we
expanded it in azimuth over the interval [−π, π] and restarted
our simulation with an embedded planet. We ran the HDradJ
simulation over 150 orbits at the planet location and obtained
the azimuthally averaged values of βc, as well as the volume

Fig. 5. Same as Fig. 4 for azimuthally averaged quantities for the 3D
simulation HDradJ with an embedded Jupiter-mass planet. The snapshot
corresponds to the end of the integration at 150 orbital periods at the
planet location (5.2 au).

density and the optical thickness at the end of the integration
(see Fig. 5). At the point, the planet has carved a gap and deeply
modified the disc structure. However, the values of βc inside the
planetary orbits are still compatible with the ‘adiabatic’ regime
of wave propagation; thus, we would expect to find multiple gap
and rings in the inner disc region (r < 4 au).

In Fig. 6, we show the perturbed surface density of the
HDradJ simulation at different snapshots indicated in orbital
period at the planet location: in the left panel, at t = 20 orbits,
we clearly see the gap at the planet’s orbit and a primary ring of
gas at the inner and outer gap edges (with the density maxima,
respectively, at r ∼ 4 and ∼ 6.7 au) as well as the primary spiral
arm. The secondary and a tertiary arms are clearly present inside
the planetary orbit launched, respectively, at (r, φ) ∼ (3.8,−π)
and (r, φ) ∼ (3.8,−1.8), propagating in the inner disc. The pres-
ence of multiple spiral arms is a necessary condition to have
multiple gaps (Miranda & Rafikov 2019, 2020b). As for the pri-
mary gap at the planet’s orbit, multiple gaps form when density
waves steepen into shocks depositing angular momentum into
the gas. A second and a third ring at r ∼ 3.3 and 2 au, respec-
tively, are clearly formed at t = 100 (Fig. 6, second panel, and
Fig. 7, top panel). Over the total integration time of 150 orbits,
the primary gap is still evolving and rings of density maxima
slightly move inwards and outwards as indicated by the verti-
cal dotted lines in Fig. 6. The density contrast of the innermost
ring increases with time while the second ring at r ∼ 3.3 par-
tially merges with the primary inner ring as the former eventually
moves inwards.

From the computation of η (Fig. 7, bottom panel), we can see
there is a pressure bump at the innermost ring at about 2 au, so
that a reservoir of dust would be assumed to be trapped there,
while the primary and secondary rings are marginally separated
at t = 150 orbits. The pressure bump at about 3.3 au should stop
dust from drifting inwards, thereby making a distinct reservoir
with respect to the one centered at 2 au. The 3D fully radiative
simulations require about a longer computational time by a factor
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Fig. 6. Perturbed surface density of the HDradJ simulation at different snapshot indicated in orbital period at the planet location. The letters in
the left and central panels indicate the primary (P), secondary (S), and tertiary (T) spiral arms. The dashed lines indicate the position the radial
position of the pressure bumps, i.e. the values of r for which η = 0, with a positive slope, shown in Fig. 7.

Fig. 7. Top panel: azimuthally averaged surface density profile for simu-
lation HDradJ at the same snapshot represented in Fig. 6. Bottom panel:
azimuthally averaged η values. The dashed line indicates the boundary
of the damping region.

of 10 with respect to isothermal or adiabatic simulations with
controlled cooling2. The important result here is that distinct dust
reservoirs can be formed in a realistic scenario, where thermal
processes are computed in a self-consistent way.

4.2. Comparison with various EoSs

In this subsection, we consider simulations with an embedded
Jupiter-mass planet (as in the HDradJ case, but using a dif-
ferent EoS) to compare the results obtained in HDradJ with
different wave-damping regimes (see Miranda & Rafikov 2020a;
Ziampras et al. 2023). In the following, we consider discs with
respectively an isothermal EoS (HDiso), an adiabatic EoS with
temperature relaxation to the initial value as in Eq. (1) (HDβc

with βc = 1 and βc = 100) and an adiabatic case without thermal
relaxation (HDadia).

2 The diffusion part of the energy equation is solved implicitly and this
often requires a large number of iterations for the numerical scheme to
reach convergence.

We integrated the new simulations on longer timescales with
respect to HDradJ taking advantage of shorter running times3

to check the persistence of rings and gap structures. Moreover,
the disc domain is extended further in to investigate the pos-
sible formation of rings inside the one at 2 au obtained in the
case of HDradJ; in addition, we sought to confirm that this inner-
most ring at 2 au is not affected by the close inner disc boundary
(which is at 1.5 au in HDradJ ).

We show in Fig. 8 the perturbed surface density at t = 150
orbits at the planet location (top panels) and at t = 500 orbits
(bottom panels) for all these cases; for comparison, we also
inserted the results obtained before for the HDradJ case at t = 150
orbits between the two HDβc cases. As for the 2D case (Ziampras
et al. 2020), the locally isothermal disc is the most efficient in
forming multiple rings and gaps: three in our disc, which are
also very contrasted (see Fig. 9, top panel), and are effective dust
barriers based on the radial profile of η (Fig. 9, bottom panel).
We confirm that we observed spiral arms extending further in,
but no additional ring was observed inside r = 2 au.

At t = 500 orbits, the rings appear more contrasted with
respect to t = 150 orbits, which is a good indication for their
persistence. In all the cases, an innermost ring is formed close
to r = 2 au, except in the case with βc = 1. According to the
results obtained for 2D discs, this is the case where wave damp-
ing appears to be the most efficient (when no radiative effects are
taken into account; see Ziampras et al. 2023).

We note the similarity between the fully radiative case and
simulation HDβc with βc = 100 (i.e with a cooling time con-
sistent with typical cooling times inside the Jupiter orbit; as
shown in Fig. 5). We can also state that the ring at r = 2 au is
not affected by the close radial boundary, since a very similar
structure has been obtained in discs extending further in.

5. MHD simulation with prescribed cooling

In the previous section, we describe how the opening of sec-
ondary gaps by a Jupiter-mass planet is observed in low-viscosity
3D discs with a self-consistent treatment of the diffusion of

3 About 2.5 hours for 10 orbits at the planet location on 1 GPU AMD
MI250 to be compared with 2.5 hours for 1 orbit on 96 cores on AMD
Genoa EPYC 9654.
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Fig. 8. Perturbed surface density at t = 150 orbits at the planet location (top panels) and at t = 500 (bottom panels) orbits. From left to right:
simulation sets HDiso, HDβc with βc = 1, HDrad, and HDβc with βc = 100, HDadia. We observe multiple rings formation that depend on the EoS.
Rings are persistent on longer integration times. For the radiative case, we report the last snapshot, i.e. the one at 150 orbits in the bottom panel.

Fig. 9. Azimuthally averaged surface density profile (top) and the η val-
ues (bottom) for simulation sets HDiso, HDβc , and HDadia at t = 500
orbits at the planet’s location.

heat. We consider the formation history of Jupiter by analyzing
smaller masses in Section 6. In this section, we describe how
low-viscosity discs transport gas towards the star at very low
rates with respect to typical accretion rates observed in young
stars (Hartmann et al. 1998; Manara et al. 2016). Instead, in
magnetised discs embedded in warm fully ionised corona, gas
transport at disc surface layers (at about two to three disc scale
heights) can provide the required accretion flow onto the star,
which we did not include in our simulation HDradJ. In fact, gas
can flow inwards because of angular momentum removal by disc
winds (Béthune et al. 2017; Lesur 2021b).

In the simulations presented here, we did not solve the radi-
ation field; instead, we prescribed a warm corona via a steep
vertical increase of the disc midplane temperature from three to

five pressure scale heights. Precisely, similarly to Béthune et al.
(2017), the disc is initialised with a temperature ratio between
the corona and the disc Tcd = 6, as follows,

T (θ̃) = 1 + (Tcd − 1)
(

1
1 + exp[−6(|θ̃| − 4h)/h]

)2

, (13)

where θ̃ ≡ π/2 − θ is the latitude, h is the disc aspect ratio
(constant as our MHD discs are considered non-flared; see
Appendix A). To this aim, we assumed the following function
for the sound speed,

cs(r, θ) =

√
GM∗

r
h2T (θ̃). (14)

Considering the equations for vertical and rotational equilibrium,
we provide in Appendix A the initial volume density and the
initial azimuthal velocity we used in our MHD simulations. After
the disc initialisation, we increased Tcd to 10 in the time interval
[0 : 30] (code units).

The initial magnetic field is vertical B = Bz. Although there
is a high level of uncertainty about the topology of the magnetic
field of protoplanetary discs, their intensity is known to be weak
(Lesur 2021b,a) in the sense that the midplane ratio of thermal
over magnetic pressure: β ≡ 2µ0P/B2

z ≫ 1. Therefore, we con-
sidered discs with initial midplane values of β = 106, 105, 5×103

and computed the radial profile of the magnetic field at midplane
from β and from the midplane pressure, P = ρ(r, 0)cs(0)2.

We did not solve the energy equation with the FLD approach
(Eq. (2)) as in simulation HDrad J since this would require
extremely long integration times for 3D MHD simulations. How-
ever, as we show in Fig. 8, when relaxing the internal energy to
the initial temperature profile according to Eq. (1) on a cooling
time βc = 100, we obtain results that are very similar to the fully
radiative case. Therefore, we considered Eq. (1) in our MHD
simulations with cooling time: βc = 100.
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Fig. 10. Top panel: density distribution in the (r,Z) plane obtained for
our simulation MHDβ5e3 with ΛA1 at t = 300T0. Bottom panel: com-
putation of Ṁ(r, θ) (Eq. (15)), averaged over the time interval [100 :
300]T0.

Before inserting the planet, we ran 2D (r, z) simulations for
a few hundreds orbits at r = 1 au. At t = 300T0 (T0 = 2π yr)
we show (Fig. 10, top panel) the density distribution on the (r,Z)
plane for the case β = 5 × 103 and ΛA = 1 (fiducial simulation).
In Fig. 10 (top panel) we see that in the regime of Ohmic dif-
fusion dominating over the Ambipolar one, there is no evidence
of spontaneous generation. In other words, in the absence of the
planet, the density distribution does not show rings and gaps (see
e.g. Béthune et al. 2017). Therefore, when inserting a planet, any
gap and ring formation will be a consequence of the perturbation
induced by the planet itself. We also computed the mass flux as
a function of r as

Ṁ = 2(Ṁd + Ṁw), (15)

where the factor of 2 takes into account the full disc. The quan-
tities Ṁd and Ṁw are the mass flux of the disc region up to 2H
and the corona from 2H to the disc surface, respectively. These
quantities are computed from

Ṁd =

∫ 2π

0

∫ π/2

θ2H

ρvrr2 sin(θ)dθdφ. (16)

Here, θ2H is the colatitude at two disc scale heights and then we
have

Ṁw =
∫ 2π

0

∫ θ2H

θ0

ρvrr2sin(θ)dθdφ, (17)

with θ(0) the value of the colatitude at the disc surface. In the
bottom panel of Fig. 10, we plot this quantity averaged in time
from 100 to 300T0 for our fiducial simulation. Negative values
correspond to flux directed towards the star, while positive ones
correspond to gas outflow. The corona appears to be dominated
by disc out flowing wind while the disc accretes with values
of Ṁ ∼ 10−7M⊙/y, similar to typical accretion rate observed in
young stars (Hartmann et al. 1998; Manara et al. 2016). We pro-
vide in Appendix B an analysis of the mass flux from angular
momentum conservation arguments.

We let the planet growing for t = 10 orbital periods at the
planet location and continued our simulation over 100 orbits. In
Fig. 11, we show the perturbed surface density of our MHD runs
at t = 100 orbits at rp = 5.2 au.

From left to right, we show the increased strength of the mag-
netic field and for a given value of the magnetic field, we can
also increase the ambipolar diffusivity depending on the results
obtained for multiple ring formation. For the lowest value of
the magnetic field (β = 106, left panel), we see the formation
of a secondary ring t about r = 2 au. In this case, we consid-
ered ΛA = 10, which corresponds to a very low effect of the
non-ideal ambipolar diffusion effect. Keeping this same value of
ΛA, and increasing the strength of the magnetic field (β = 105,
second panel), we can scarcely identify the formation of a sec-
ondary ring. Instead, by increasing the ambipolar coefficient
(ΛA = 1, third panel), we observe a significant enhancement
of the secondary ring. By further increasing the magnetic field
(β = 5 × 103, right panels), we observe that the inner planet-
induced spiral arms can be damped; in this case, no secondary
ring would ever form at ΛA = 10 (not shown) or ΛA = 1 (fourth
panel), while a weakly contrasted secondary ring appears for
ΛA = 0.1 (fifth panel). Finally, a well-contrasted secondary ring
appears in the right-most panel of Fig. 11 for ΛA = 0.01.

For the largest value of β, the magnetic field is immate-
rial and the formation of secondary rings closely resembles
that occurring in purely hydrodynamical discs, regardless of the
Ohmic and ambipolar diffusion coefficients. As the magnetic
field increases (for smaller values of β), MHD effects come into
play and the magnitude of ambipolar diffusion is found to have
a strong impact on the existence of secondary rings.

This effect is similar to the one observed in the formation of
zonal flow (Béthune et al. 2017; Riols et al. 2020) in disc regions
where Ambipolar diffusion is the dominant non-ideal effect. In
particular, spontaneous accumulations of gas are observed with
anti-correlated concentrations of the vertical component of the
magnetic field Bz. It has been shown (Béthune et al. 2017) that
ambipolar diffusion is responsible for the accumulation of Bz.
Therefore, if one or multiple gaps forms in a non-spontaneous
way (e.g. because a massive planet perturbs the gas), then Bz will
accumulate in the gaps (Wafflard-Fernandez & Lesur 2023) and
lead to gas accumulation in rings, provided that the ambipolar
diffusion is strong enough.

In Fig. 12, we show the azimuthally averaged surface density
(top panel) and the η values (bottom panel) as a function of r at
the same snapshot of Fig.11. The plots correspond to the simula-
tions presented in Fig.11 for which a clearly contrasted secondary
ring is formed (i.e. for β = 106 with ΛA = 10, for β = 105 with
ΛA = 1, and for β = 5 × 103 with ΛA = 0.01).

The values of η for both the primary and secondary rings at
r 2 au reach values close to zero, although we do not observe a
clear transition from negative to positive η, which is necessary
for dust-trapping. A longer integration time would be required
to verify whether dust-trapping is possible in these rings. Never-
theless, we consider very interesting that rings form for values of
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Fig. 11. Perturbed surface density of the MHD simulations. From left to right: increase in the strength of the magnetic field. In addition, for a given
value of the magnetic field, we can also increase the Ambipolar coefficient value. For the lowest value of the magnetic field (left panel), we see the
formation of a secondary ring at r = 2 au with our lower value of ambipolar diffusion (ΛA = 10); thus, we do not run additional simulations in this
case. In the case of βm = 105 (second panel and third panels) we observe a secondary ring for ΛA = 10; however, the formation of a secondary well
contrasted ring requires a higher ambipolar diffusion strength (ΛA = 1, third panel). Finally, for βm = 5× 103, there is no secondary ring formed for
ΛA = 10 (not shown) nor for ΛA = 1 (fourth panel). We observe a poorly contrasted secondary ring for ΛA = 0.1 (fifth panel). Finally, we observe
a well contrasted secondary ring for ΛA = 0.01 (right-most panel).

Fig. 12. Azimuthally averaged surface density profile (top) and
azimuthally averaged η values (bottom) for MHD simulations presented
in Fig. 11. Here, a well-contrasted secondary ring is formed. The planet
is kept on a fixed circular orbit at rp = 5.2 au and the ticks on the x
axis (as well as the vertical black lines) indicate the values of η ∼ 0
with positive slope. The horizontal black line corresponds to η = 0. The
damping region extends radially from rmin to the dotted line.

non-ideal parameters that are plausible in the disc region inside
the Jupiter orbit.

6. Minimum planet mass for forming dust-trapping
rings

It is well known (Lambrechts et al. 2014; Bitsch et al. 2018) that
when a giant planet core reaches few tens of Earth masses, the
so-called pebble isolation mass is reached and dust (at suited
Stokes numbers) is blocked at the outer gap’s edge opened by
the core. Moreover, in low-viscosity discs even cores of less than
20 Earth masses can open small gaps lowering the limit of the
pebble isolation mass (see Bitsch et al. 2018). On the other hand,
the dust inside the planet’s orbit drift towards the star and is even-
tually stopped at the inner (close to 1 au) pressure bump due do
gas removal by magnetised winds (Suzuki et al. 2010; Ogihara
et al. 2018).

We show in this paper that a Jupiter-mass planet has the abil-
ity to form multiple rings, according to disc thermal properties

Fig. 13. Top panel: azimuthally averaged surface density profile for sim-
ulations Hrad30, HradS and HradJ at 150 orbital periods at the planet
location. Bottom panel: azimuthally averaged η values. Colour markers
at η = 0 with a positive slope identify the position of the pressure bumps
on the top panel.

and to non-ideal magnetic diffusivities. However, such rings can
be effective dust’s reservoirs if they form early on in the Jupiter
formation history, possibly when Jupiter core has reached or
slightly overcome the pebble isolation mass. Therefore, in this
section, we describe the simulations we performed for a planet
of a Saturn mass (simulation HDradS) and for a super-Earth of
30 Earth masses (simulation HDrad30) to check their ability to
form multiple rings.

The super-Earth opens a gap and forms a secondary ring (at
∼3.8 au). which increases in density contrast on long integration
times (see Fig. 13). A third density maximum appears which,
however, is not associated to a local pressure maximum since it
has η > 0. Instead, three rings appear for Saturn at 150 orbits
and two for Jupiter, as previously discussed. The values of r for
which η = 0 move inwards when we are increasing the planet’s
mass.

From Fig. 13, we can propose the following evolutionary pic-
ture. When a planet reaches the pebble isolation mass, it starts
trapping dust at two locations near the inner edge of its gap.
As the planet grows in mass, the locations of these two rings
shift inwards, together with their dust. Near the mass of Saturn,
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a third ring appears near 3 au, trapping the dust that had not been
trapped in the two other rings (unless the planet grows so slowly
that all the untrapped dust has already drifted into the star). As
the planet grows further, the two initial rings merge and the last
one moves from ∼3 to ∼2 au. Obviously, this picture does not
take into account that the planet is migrating at the same time.
However, in the case of a proto-Jupiter, its migration may have
been stalled or even reversed by the appearance of a proto-Saturn
(Walsh et al. 2011).

7. Conclusion

Cosmochemical observations provide evidence that millimetre-
size dust remained trapped in the inner part of the disc for a
timescale of at least a million years. Multiple trapping sites
would have had to exist to explain the formation of four fami-
lies of chondrites, which are chemically and isotopically distinct
from each other.

In this work, we have explored the possibility that Jupiter
formed local maxima in the azimuthally averaged pressure in the
inner part of the protoplanetary disc (inwards of its orbit). These
averaged pressure bumps are potential sites of dust-trapping, but
the actual response of dust to the non-axisymmetric features that
characterise these bumps remains to be investigated.

We have shown that in a low-viscosity disc, the opening
of secondary gaps and density bumps is robust. This was also
observed in our 3D simulations when we self-consistently sim-
ulated the diffusion of heat, giving a cooling timescale of about
100 orbital times in the inner disc.

When considering a strong magnetic field, we observe that
the inner planet-induced spiral arm can be damped and a sec-
ondary ring forms only if ambipolar diffusion is strong enough.
Further work is warranted to assess the origin of this damp-
ing. We note that it could arise from dissipation, when the
diffusion coefficients are at adequate levels, or from a removal
of the angular momentum flux by the wind. We remark that
self-consistent disc ionisation models show that the appropri-
ate parameters for non-ideal MHD are consistent with those for
which we observed the effective formation of secondary gaps
and rings in our simulations.

A planet seems to be able to open secondary gaps and trap
dust in rings when it reaches a mass close to the pebble isolation
mass. Thus, as it cuts the flow of dust from the outer disc across
its orbit, it also traps part of the dust in rings located inwards
of its orbit. As the planet grows, these rings move away from
the planet and can merge with each other, while a new ring can
be formed farther away. Coupled with planet migration, these
results provide a new view of the non-trivial evolution of dust
in the inner Solar System, which may be consistent with cosmo-
chemical constraints on dust preservation and confinement on
extended timescales.
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Appendix A: Setting initial conditions for MHD
simulations

We describe the method we used to determine the initial condi-
tions for our MHD simulations described in Section 5 in order
to model discs with a warm corona. To this aim we start with
a corona mildly hotter than the disc’s midplane, and determine
the vertical density and rotational velocity profiles that corre-
spond to strict hydrostatic and centrifugal equilibria. We then
progressively increase the corona’s temperature until we reach
the desired corona to disc temperature ratio.

We assume that the sound speed is inversely proportional to
the spherical radius and has a separable dependence on r and θ:

c2
s(r) = (c0

s0)2
(

r
r0

)−1

g(θ), (A.1)

where g(θ) is an even function with respect to π/2 and g(π/2) = 1
and r0 is an arbitrary reference radius where the sound speed, at
the midplane, is c0

s0. We have considered for g(θ) the function
T (θ̃) defined in Eq.13. We consider a constant disc aspect ratio:

h(r) =
cs0(r)
vK(r)

= const, (A.2)

where vK(r) =
√

GM∗
r is the circular Keplerian velocity at mid-

plane, which implies that c0
s0 ≡ hvk(r0).

The equations for rotational and vertical equilibrium in
spherical coordinates are

−
∂r(ρ0c2

s)
ρ0

+
v2ϕ

r
−

GM∗
r2 = 0, (A.3)

−
1
r
∂θ(ρ0c2

s)
ρ0

+
v2ϕ

r
cot θ = 0. (A.4)

Here, we have ρ0 and cs0(r) = c0
s0 ×

(
r0
r

)1/2
respectively the

density and the sound speed at the midplane at radius r. We intro-
duce notations similar to those of Masset & Benítez-Llambay
(2016) and define

L = log ρ0, v = log
(

r
r0

)
, u = − log(sin θ).

Equations (A.3) and (A.4) become

−c2
s∂vL + c2

s + v
2
ϕ −

GM∗
r
= 0, (A.5)

c2
s0(r)
∂u[ρ0g(θ)]
ρ0

+ v2ϕ = 0. (A.6)

Introducing m ≡
v2ϕ
c2

s
, we get:

−∂vL + 1 + m −
GM∗
rc2

s
= 0, (A.7)

c2
s0g(u)∂uL + c2

s0∂ug(u) + v2ϕ = 0. (A.8)

As per our assumption of a constant aspect ratio, K ≡ GM∗
rc2

s0
is

a constant and the equations above can be recast as:

−∂vL + 1 + m −
K
g(u)

= 0, (A.9)

∂uL +
∂ug(u)
g(u)

+ m = 0. (A.10)

Define G(u) = 1
g(u) , and L′ = L + log g(u), giving:

−∂vL′ + 1 + m − KG(u) = 0, (A.11)
∂uL′ + m = 0. (A.12)

Let m′ = m − KG(u), thus, we have

−∂vL′ + 1 + m′ = 0, (A.13)
∂uL′ + m′ + KG(u) = 0. (A.14)

The values of m′ and L′ are determined using a method of
characteristics. We introduce the following combinations of the
coordinates u and v:

s = u + v, (A.15)
s′ = u − v, (A.16)

so

u =
1
2

(s + s′), (A.17)

v =
1
2

(s − s′). (A.18)

Using Eqs. A.13 and A.14, we derive

∂sm′ =
1
2

(∂um′ + ∂vm′) = 0

Thus, m′ depends only on s′, and its dependence on s′ can
be determined at the midplane. Considering a constant h and a
midplane density, ρmid =

Σ0(r/r0)−αΣ−1
√

2πh
, we obtain from Eq. A.13:

ξ + 1 + m′ = 0⇒ m′ = −ξ − 1,

with ξ = αΣ + 1 Hence,

m = h−2G(u) − 1 − ξ. (A.19)

From Eq. (A.14), we get

∂uL′ + h−2G(u) − 1 − ξ = 0. (A.20)

Letting W(u) =
∫ u

0 G(u′) du′, we have

L′(u) = L′(0) − h−2W(u) + (1 + ξ)u,

hence

L(u) = − log g(u) + L(0) − h−2W(u) + (1 + ξ)u.
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Thus, the density profile is

ρ(u) =
1
g(u)
ρmid exp[−h−2W(u) + (1 + ξ)u], (A.21)

= ρ00

(
r
r0

)−ξ
(sin θ)−1−ξG(u) exp[−h−2W(u)], (A.22)

with ρ00 =
Σ0√
2πh

. Finally, from the expression for m (Eq. A.19),
the azimuthal velocity is

v2ϕ = (cs0)2h−2 − (1 + ξ)c2
s , (A.23)

= (c0
s0)2

( r0

r

) GM∗
r0(c0

s0)2
− (1 + ξ)c2

s , (A.24)

=
GM∗

r
− (1 + ξ)c2

s . (A.25)

Appendix B: MHD simulations diagnostics

In the following, we provide some diagnostics on our MHD sim-
ulations based on the study of mass transport through the disc in
terms or mass flux or mass accretion (or mass loss through the
wind) rates.

The radial mass flux is generated by torques that determine a
loss of angular momentum. We follow Béthune et al. (2017) and
compute quantities defined in their Eqs. 8 and 9 and reported
here:

– The azimuthal average of a quantity X is denoted as

< X >φ=
1
∆φ

∫ ∆φ

0
X(r, θ, ϕ, t)dϕ

– Radial profiles are obtained by vertical integration in the disc
domain,

< X >φ,θ=
1

2H(r)

∫ H(r)

−H(r)
< X >φ (r, θ, t)dθ

– A density weighted quantity is denoted as

< X >ρ=
< ρX >φ,θ
< ρ >φ,θ

– The fluctuating Reynold stress tensor is defined by:

R ≡ ρṽ ⊗ ṽ

where ṽ = v− < v >ρ.
– The Maxwell stress tensor is:

M ≡ −B ⊗ B

and we call T ≡ R +M
– We use the same notation as Shakura & Sunyaev (1973)

to define α values by normalising with vertically integrated
pressure:

αR(r, θ, t) =
< R >φ

< P >φ,θ
(B.1)

and similarly for values associated to the magnetic field,
denoted αM.

Fig. B.1. Computation of the α values from Eq.B.1 averaged over time
for the fiducial MHD simulation with β = 5 103 and ΛA = 1.

The radial mass flux can be deduced from the conservation
of angular momentum, provided Σ(r) = 2H(r) < ρ >φ,θ:
Σ(r) < vr >ρ ≡ τr + τz
τr ≃ − 1

r(∂r<rvφ>φ,θ)
∂r(2r2H(r) < Tr,φ >φ,θ)

τz ≃ − r
[∂r<rvφ>φ,θ]

(< Tφ,θ >φ)+H
−H

(B.2)

where τr gives the mass flux due to the radial component of
the angular momentum and τz gives the mass transport due to
angular momentum extracted at disc surfaces z = ±H

In Figure B.1, we clearly see that the α values associated to
the magnetic field dominate with respect to the Reynold α val-
ues. From Fig. B.2, we can appreciate that the l.h.s. and the sum
of the τ component of the r.h.s. of the equation follow nicely
the same trend both when averaged on time and on space in
the interval r ∈ [2 : 8]r0. Moreover, in this radial interval there
is no contribution to the mass flux from the radial transport
of the angular momentum. Precisely, let’s notice (Fig.B.1), that
< αMrφ >φ,θ is practically constant for r ∈ [2 : 8]r0, and it is the
divergence of this term (i.e of Trφ in Eq.B.2) that contributes to
the radial mass transport.

Therefore, the mass flux is completely due to the angular
momentum extracted from the disc in the vertical direction (in
this case it is the value of Tφ,θ in Eq.B.2 at z = ±H that con-
tributes to τθ).This result is in agreement with the one described
in the fiducial simulation of Béthune et al. (2017) (their Fig.7).

Appendix C: Boundary conditions for MHD
simulations

In our MHD simulations, we considered the following boundary
conditions:

– Hydrodynamical quantities:
1. Inner radial boundary: We extrapolated the density

and the energy from the active cells into the ghost cells
according to the initial power law profile. We extrapo-
lated the azimuthal velocity component of the active cells
into the ghost cells according to the Keplerian profile.
The polar component of the velocity was copied from
the active cell into the ghosts cells. We closed the inner
boundary by setting to zero the radial component of the
velocity.
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Fig. B.2. Computation of the radial and vertical contribution to the mass
flux (Eq.B.2) compared to the measured mass flux (l.h.s. of Eq.B.2). Top
panel: Temporal average. bottom panel: Spatial average.

2. Outer radial boundary: We extrapolated the density
and the energy from the active cells into the ghost cells
according to the initial power law profile. The azimuthal
component of the velocity was extrapolated according to
the Keplerian profile. The polar component of the veloc-
ity was copied from the active cell into the ghosts cells.
For the radial velocity component, we compared the value
of the active cell to a threshold value ṽr proportional to a
fraction of the sound speed. We set the velocity in the
ghost cells equal to ṽr if the velocity of the active cell
is smaller than the threshold value; otherwise, we simply
copied the value of the active cell into the ghosts.

3. Polar boundaries We extrapolated the density and the
energy fields according to the hydrostatic vertical equi-
librium defined in Appendix A. We extrapolated the
azimuthal velocity according to rotational equilibrium
(Appendix A). We copied the radial and the vertical com-
ponents of the velocity from the active cells into the ghost
cells.

– Magnetic field components and EMF

1. Inner and outer radial boundary: We linearly extrap-
olated the values of the electromotive forces from the
active cells into the ghost cells. We copied the azimuthal
and the vertical components of the magnetic field from
the active cells into the ghosts. We derived the radial
component of the magnetic field by requiring that the
divergence of the magnetic field in the ghost cells is zero.

2. Polar boundaries We linearly extrapolated the values of
the electromotive forces from the active cells into the
ghost cells. We copied the azimuthal and the radial com-
ponents of the magnetic field from the active cells into the
ghosts. We derived the polar component of the magnetic
field by requiring that the divergence of the magnetic field
in the ghost cells is zero.

Finally, we imposed a density floor by requiring that the mini-
mum value of the density is given by:

ρmin =
B2

r + B2
θ + B2

φ

4vkinµ0
(C.1)

where vkin is the Keplerian velocity at the inner radial boundary.
In other words, we forced the Alfvén speed to remain lower than
few times the Keplerian velocity at the inner boundary.
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