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THE NAVIER-STOKES EQUATIONS

* Momentum equation

e Pis the pressure, F an external force, v the kinematic viscosity, and v
the velocity; incompressibility is assumed.

e Quadratic invariants (F = 0, v =0):

E=]v2dx
H=]v-w dx w = Vxv
* Reynolds numbers:
Re=UL/V Ry=UN/V

where L is the integral scale and A the Taylor scale.



THE ENERGY CASCADE

Starting from - in (& x)cos(k, y) cos(k,z)

v = | —cos(k,x)sin(k,y)cos(k,z)
0

as initial condition, and replacing in the Navier-Stokes

equation 5}\‘

v

= ko Slng"ox) [cos(2k,2) — cos(2k, ) | 3k2v cos(k,x) sin(k, y) sin(k,z)

o~ [ ]
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o \\\\\\‘ e This process can be repeated,
' N and smaller eddies are created
S T until reaching the scale where the
dissipative term dominates!
Taylor & Green, Proc. Roy. Soc. A

151, 421 (1935).
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TURBULENCE: THE NAVIER-STOKES EQUATIONS

e This leads naturally to a Fourier representation for the velocity in
the momentum equation

e Fourier representation
vix,t) =/ d°k KX vik, 1)

* Energy spectrum S(k) ~ (|V[k)|2)

* Large, energy containing eddies with correlation scale L. Small
scale fluctuations with wavenumber k>>1/L.



ENERGY TRANSFER AND TRIADIC INTERACTIONS

a—V+V-VV=—VP+VV2V+F

ot




ROTATING FLOWS

e Momentum equation

%-l—w><u+‘.ZQ><u=—V7-’+I/\72u+F Vou=0

P is the pressure, F an external force, v the kinematic viscosity, Q the
angular velocity, and u the velocity; incompressibility is assumed.
e Quadratic invariants (F =0, v =0):

E = fu’ d&’x
H=fuwd ® = Vxu
e Reynolds, Rossby, and Ekman numbers
LU U Ro v
s o= 50L; Re  2QLZ

where L_. is the forcing scale.



INERTIA
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NUMERICAL SIMULATIONS

e GHOST code, publicly available.

e Visualizations done with VAPOR, publicly available.
* Periodic boundary conditions.

e Bounded domain.

e Discrete set of inertial waves.

* The number of modes that satisfy resonance conditions depends
on wavenumber.

e Natural representation in terms of Fourier modes.

* External forces are body forces.



NON-HELICAL ROTATING TURBULENCE
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WAVES IN ROTATING FLOWS




WAVES OR EDDIES?
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Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus, PoF 26, 035106 (2014).
See also Hopfinger et al 1982, Bewley et al 2007, Bordes, Moisy, Dauxois and Cortet 2012



WAVES IN ROTATING FLOWS

This leads to a natural decomposition in spectral space:
e 3D modes are “waves” (or “fast” modes, for sufficiently large Ro).

e 2D modes are “eddies” (or “slow” modes).

aite) — § wan(® it k € W,
uJ_(kJ_) —|—w(kJ_)2 if k € V,

Wy = {k S.t. ’k| # (0 and k” =~ O}
Vi :={k s.t. k| # 0 and k| = 0}



ENERGY SPECTRUM OF ROTATING (NON-HELICAL) FLOWS

} . Non-helical case:
A A | Q+0 ' An inverse cascade of

2 G Wete, . energy develops for small
L | Ro.

| ® The flow becomes

.' | anisotropic.

| > o3 . & The spectrum goes

[ 2 .f towards k -2 as rotation is

N\ 3 .
\'. . increased (Ro decreased).

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009)



PHENOMENOLOGY OF ROTATING TURBULENCE

e The interaction of waves and eddies slows down the cascade
(Cambon and Jacquin 1989, Cambon, Mansour, and Godeferd 1997).

e Following Kraichnan (1965) phenomenology, we can assume that the
time to move energy across scales is increased by a factor T, /.

e The inverse of the transfer time then becomes /4,,= T, /t/.

e As a result of the resonant interactions, the flow also becomes
anisotropic, with 1/, ~u,/l,.

e The energy transferred between scales per unit of time is
e Then the energy spectrum is E(k )~ Dubrulle 1992, Zhou 1995).

e A more detailed derivation using two-point closures can be found,
e.g., in Cambon and Jacquin (1989).



SPATIO-TEMPORAL SPECTRUM
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DOMINANT DECORRELATION TIMES

Time scales:

* Wave period

k
7.,(k) = C, —QQ]{,‘”

e Non-linear time

1
c1/4Q)1/4).1/2

™ (k) = CnL

e Sweeping time

1
Tsw (k) — CSW

Uk

160 Yo = Tow
Yo = TXL
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160

Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus, PoF 26, 035106 (2014)



DECORRELATION TIMES
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DECORRELATION TIMES

{1=8
wm' ) :: :::v; Fz'j(k,'r) _ <’&fg<, t)’&jgk,t—l—T»t
L (|la; (k, t)u;(k,1)]),
190
1200 g S Al — K m-:_lo.]

N = O 1A e 1w

k)



DECORRELATION TIMES
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DECORRELATION TIMES
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See Cambon & Jacquin (1989)
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DECORRELATION TIMES

() -G ()

See Cambon & Jacquin (1989)
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RECOVERY OF ISOTROPY

If isotropy is recovered:

CNL Co
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ISOTROPY VS. ANISGTROPY

e Do rotating flows recover isotropy at small scales?

e Since we don’t feel the rotation of the Earth, we know it should!
e How does rotating turbulence look like in that multi-scale case?
e We can expect the spectrum to be

E(k)= Ak™ + Bk™"
Pt
(with 2 < a <2.5). The transition between the two spectra

should take place when the eddy turnover time becomes of the
same order as the wave time (Zeman 1994):

93 1/2
kQ —_— -
E
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RECOVERY OF ISOTROPY
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RECOVERY OF ISOTROPY
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RECOVERY UF ISUTRUPY
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Mininni, Rosenberg, & Pouquet, J. Fluid Mech. 699, 263 (2012),
see also Delache, Cambon and Godeferd (2014)



ENERGY TRANSFER AND TRIADIC INTERACTIONS

e We can decompose the velocity field as

L

uk,t) =ayr(k,t)hy +a_(k,t)h_
as(k,t) = Ay (T)e"x!

Craya (1958), Herring (1974), Waleffe (1993).

A A AL A e/



ENERGY TRANSFER AND TRIADIC INTERACTIONS

a—V+V-VV=—VP+VV2V+F

ot




TRIADIC INTERACTIONS IN ROTATING TURBULENCE

e The evolution of the kinetic energy in shells in Fourier space is

aL=—f[(v Vv ]dpdq—ikPk—vkzvk+Fk k
k+p+q=ov

 In rotating flows we have Rossby waves, that slow down the energy
transfer through resonant interactions (Cambon and Jacquin 1989,
Cambon, Mansour, and Godeferd 1997, also WT see Galtier 2003):

g 1t
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ENERGY TRANSFER AND TRIADIC INTERACTIONS

8tCL8k — Ro E / Z;;p qCLSPCLS; ez(wsk—l-wsp—Fwsq)tdpdq
k+p+q=0
k) P q

e Instability theorem (Waleffe
1993).

e However, this is not valid for
too small values of k..

e See Lamriben, Cortet & Moisy
2011 for an experimental
study of anisotropic transfer.




PHENOMENOLOGY REVISITED

— Ro } : / Z;;p qaspas; ez(wsk+wsp+wsq)tdpdq
k+p+q=0
ki oy q)
Sk +Sp— +5,— = O(Ro
k‘ b D q q ( )

The rate of energy transfer can
be estimated as

¢ Uy u_i? o ’LLZl
Q) \eL ) 2




ENERGY TRANSFER AND TRIADIC INTERACTIONS

e To transfer energy to 2D modes,
near-resonant and non-resonant

Sk@ 4 sp@ 4+ sq% — O(Ro) interactions are needed.
k P q e Smith & Lee (2005): Truncated

simulations with only some
interactions preserved. Near-
resonant interactions are needed
to reproduce the quasi-two
dimensionalisation of the flow

e Alexakis (2015): Analysis of a
large numerical dataset. The
dynamics of the 2D modes can
only be captured if near-resonant
and non-resonant interactions are
taken into account.




ENERGY TRANSFER AND TRIADIC INTERACTIONS

e From the momentum equation, we can derive an equation for the
evolution of the correlation functions:

a * . *
ot (0 - uk>t’ = ! Z (u'y - (up - q)UQ>t’
p+q=k
e The term on the r.h.s. is a triple correlation associated with triadic

interactions.
O(k,p,q,7) = (ug(t') - [up(t’ +7) - q]uq(t’ + 7))

* For pure wave modes, the Fourier transform of the triple correlation is
perfectly tuned in the wave frequency (i.e., in the resonance):

B api) = [ ¢ ilt) - Tup(t' +7) - a uglt' + ), dr

— OO

_ / erertea (UL (Uy - q) Ugemienmsomsa’) gy

= Uy - (Up - q)Uq 0(w — wi).
T s S —————————




ENERGY TRANSFER AND TRIADIC INTERACTIONS
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ENERGY TRANSFER AND TRIADIC INTERACTIONS
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Clark di Leoni & Mininni, arXiv (2016)



ENERGY TRANSFER AND TRIADIC INTERACTIONS

@(kv b, q, T) — <ul*<(t/) ' [up(t/ + T) : CI] uQ(t/ + 7_)>t’

Clark di Leoni & Mininni, arXiv (2016)




INVERSE CASCADE

* Once the energy reaches the 2D modes, it can develop an inverse
transfer towards large scales.

e Returning to the 2D+3D decomposition:
(k) = { usp (k) itk e W,
ul (k) +wk, )z ifk eV
Wy :={k s.t. |k| # 0 and k)| # 0}
Vi = {ks.t. |k| # 0 and k| = 0}
e \We can write equations for the energy in these modes:
diEisp = 1lap_3p — l3p + €3p,
diFop = —llaop_3p — Ilap + €2p
e |f the coupling between 2D and 3D modes goes to zero for zero Ro:
ou

- +u,-Vu, = -VP + vV,

(see however Alexakis 2015, Gallet 2015).



INVERSE CASCADE

10} .
>
o
D
S  _
10 .
= Ilop_3p — lIsp + €3p,
= —llopssp —llop +€2p B
10°°}
10° 10’ 10°
1

Sen, Mininni, Rosenberg, & Pouquet, PRE 86, 036319 (2012), also Campagne et al. (2015).



INVERSE CASCADE

Sen, Mininni, Rosenberg, & Pouquet, PRE 86, 036319 (2012), also Campagne et al. (2015).



HELICITY AS AN INVARIANT OF 3D EULER

e FEuler equations for an ideal, incompressible
fluid with uniform density (1757):

p(a—u+U°Vu) =-Vp
ot

e The equations can be written as

p(a—u+wxu) =-Vp'
ot

with @ =V xu
e Note that when @wxu =0
the non-linear term becomes zero.




HELICAL FLOWS

H =f(z)-udV
O =Vxu
e When maximal, @xu =0 Lr
e Helicity is thus associated with L’
corkscrew motions. !

e As the non-linear term in the

momentum equation becomes zero or c

negligible, helical flows are very stable.



HELICITY WAS DISCOVERED “RECENTLY"

In 1958 Woltjer introduces the magnetic helicity
(later studied by Chandrasekhar and Kendall):

H =fB°AdV B=VxA

In 1967, Moffatt finds its hydrodynamic
equivalent:

H=fm-udV ®=Vxu

Helicity is zero for 2D flows, and it is a &
conserved quantity in 3D hydrodynamics
(without and with rotation). ®

Helicity measures the structural complexity of
the flow: it is proportional to the number of links U
in the field lines.

What is the role of helicity in atmospheric,
geophysical, and astrophysical flows?



THE ROLE OF HELICITY

Helical flows are relevant for many
applications:

e Solar and geophysical dynamo: helical
flows are known to sustain large-scale
dynamo action (Parker 1955, Pouquet et
al. 1976, Krause & Radler 1986).

* Helical velocity fields result in the
“alpha-effect”, and in the generation of
magnetic fields by self-induction.

e The large-scale magnetic fields
generated by this mechanism are
helical.

v
e The mechanism is also relevant in the

presence of kinetic effects (Mininni,

Gomez & Mahajan 2003) Berger (1999)




THE ROLE OF HELICITY

~
L\

Torok & Kliem (2005)

e Helical magnetic fields are observed in the solar wind and the magnetosphere.

e Magnetic fields can be reconstructed from observations of eruptions (e.g., from
TRACE), using minimization methods to obtain force-free fields (Titov &

Demoulin).



THE ROLE OF HELICITY

Helical flows are relevant for many
applications:

e Atmospheric flows: Lilly (1986)
speculated that rotating convective
supercell storms are more stable
because flows are helical.

e Some authors claim that helicity may
play a role in the self-organization of
the flow leading to formation of
tornadoes (Montgomery 2006, Levina
2013).

e Indices based on helicity are used for
forecasting purposes.

0Vkm
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NON-HELICAL ROTATING TURBULENCE
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NON-HELICAL ROTATING TURBULENCE




HELICAL ROTATING TURBULENCE

512° to 30727 spatial resolutions.

Re up to 10000, Ro down to
0.06.

Laminar column-like structures
develop in the flow.

Structures are helical and stable.




Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)
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ENERGY SPECTRUM IN ROTATING FLOWS

—— e

= : | .

Non-helical case: Helical case:

® An inverse cascade of energy * Inverse cascade of energy and
develops for small Ro. direct cascade of helicity.

e The flow becomes anisotropic. e The direct energy flux is sub-

dominant to the helicity flux.

e The energy spectrum becomes
steeper than k2.
Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009)

e The spectrum goes towards k.



THE HELICITY CASCADE
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HELICAL ROTATING TURBULENCE
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e With rotation, energy goes towards large scales and helicity dominates the direct
cascade: the helicity flux is constant & ~ h,t,, /A7~ hu/Al *Q), and b, ~ 1 “/u?.

o If E(k)~k, ™ H(k)~k *"or E(k )H(k )~k *

* From Schwarz, n < 2.5 (the equality corresponds to maximum helicity).

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)



THE K~ SPECTRUM AND THE DIRECT HELICITY FLUX

o The product of the energy and helicity spectra follow a ~ k,** law in several
runs with rotation and helicity.

e The amount of helicity flux that goes towards small scales (normalized by
the direct energy flux) increases with decreasing Rossby number, indicating
the dominance of a direct cascade of helicity. Baerenzung et al., JAS (2011).

* The “n+m = 4" rule has been shown recently to be exact for rotating
turbulence in the weak turbulence regime (Galtier 2014).



INTERMITTENCY: STRUCTURE FUNCTIONS

* For a component of a field f we define the
longitudinal structure functions

&) = (|6fP)
where the longitudinal increment is
of = £(x + 1) — £(x)

where f is in the direction of 1.
e If the flow is self-similar we expect
- f
Cp
S/(l) ~ 1%
with the exponents linear in p.
e For isotropic turbulence then Zp:p/3, for a non-helical rotating flow

¢,=p/2, and for the helical case T =3p/4.

e In practice departures from the straight line are observed, and the
anomalous scaling observed in the data is the result of intermittency:.



SCALING EXPONENTS

e Non-helical rotating turbulence is less intermittent than isotropic turbulence,
but even at late times the exponents still deviate from a straight line.

e The second order exponent is close to the theoretical value of 1.
e Helical rotating turbulence is almost scale invariant.

* The second order exponent is close to 1.4 (for a flow with maximum
helicity, 1.5 is predicted).
Mininni & Pouquet, Phys. Fluids 22, 035105 (2010)



ARE THERE ANY IMPLICATIONS?

* Does the presence of helicity affect the
decay of turbulence? Does it affect the
lifetime of structures?

* Note different decay laws have been
measured in simulations and experiments.
Morize, Moisy, and Rabaud 2005; Morize &r
and Moisy 2006, van Bokhoven et al. 2008, L
Davidson 2010. c’

* Does helicity affect the turbulent transport ('
and diffusion of contaminants? ‘7




FREELY DECAYING FLOWS

e Simulations of bounded freely decaying turbulence, with and without rotation/
helicity.

e Without rotation, helicity plays no role in the decay, except for a delay of the
beginning of the self-similar regime

e With rotation, the helical flow decays slower.

e The decay laws can be correctly predicted taking into account the presence of

helicity. Teitelbaum & Mininni, PRL 103, 014501 (2009)



“BOUNDED" FREELY DECAYING TURBULENCE

e From the energy balance:

e |n the absence of rotation:

e If L~L, (constant), then

e With rotation (no helicity):

which for constant L leads to E(f) ~ ¢ L. Squires et al. 1994; Morize et al. 2005.
* Taking into account the helicity cascade, it leads to E(t) ~ ¢ -//3.

dE

T

dE B2
dat L

E(t) ~t™2

E(k) ~g 1/291/21{—2
E(¢) ~ kE(k)
dE_1(EY

dr  Q\ L



SIMULATIONS OF DECAYING TURBULENCE
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e Several DNS and LES with initial E(k. )~ k.7 large-scale spectrum.

e If the parallel integral scale has not saturated, the 3D modes decay as in non-
rotating turbulence!

e |sthat all?



A VARIETY OF DECAY LAWS

, | o “Unbounded” 2D modes
(with ~ k. large-scale energy
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TRANSPORT AND MIXING

e Horizontal turbulent diffusion of a passive scalar is smaller in rotating
helical flows than in rotating non-helical flows.

Rodriguez Imazio & Mininni, PRE 87, 023018 (2013)



TRANSPORT AND MIXING
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Rodriguez Imazio & Mininni, Phys. Scripta (2013)



REGULARITY

e From the momentum equation

(Z+ V‘V)V = -VP+VW’v+F

__dE(k)
Cdt

> vie|(v, V)v, | x-2vZk) + (k)

P9

Biferale & Titi (2013)



REGULARITY

* A helical-decimated version of 3D
Navier-Stokes displays an inverse
cascade of energy, with a direct
cascade of helicity.

e The system also has regular solutions
(i.e., no singularity).

| .
| / Biferale & Titi (2013)

w4

Mininni & Pouquet, PRE 79, 026304 (2009)



CONCLUSIONS

* Rotating flows provide a relatively simple example to understand the
effect of restitutive forces and of waves in turbulence, with applications
at the large scales of many geophysical and astrophysical flows.

e The presence of inertial waves results in the dominance (at least at some
scales) of resonant and near-resonant interactions, which lead the flow
towards a quasi-2D state.

e The role of near-resonant interactions and eddies (in particular, the effect
of sweeping at intermediate scales) cannot be trivially neglected.

e The accumulation of energy in 2D modes can drive an inverse cascade
of energy towards large scales.

e Helicity can be a major player in this problem, affecting the energy
scaling and the cascades.

e This has implications in intermittency, the decay of turbulence, transport
and mixing, and regularity of solutions.



