
WAVES AND EDDIES IN ROTATING 
TURBULENCE

P.D. Mininni 
Departamento de Física, FCEyN, UBA and CONICET, Argentina 

A. Pouquet (NCAR), R. Marino (CNRS), D. Rosenberg (ORNL), T. Teitelbaum (UBA), 
P. Rodriguez Imazio (ENS), and P. Clark di Leoni(UBA) 



THE NAVIER-STOKES EQUATIONS

• Momentum equation 

• P is the pressure, F an external force, ν the kinematic viscosity, and v 
the velocity; incompressibility is assumed. 

• Quadratic invariants (F = 0, ν =0): 

                E = ∫ v2 d3x 
   H = ∫ v⋅ω d3x  ω = ∇×v 
• Reynolds numbers: 

   Re = UL / ν  Rλ = Uλ / ν 
 where L is the integral scale and λ the Taylor scale.

∂v
∂t
+ v ⋅∇v = −∇P +ν∇2v+F 0=⋅∇ v



THE ENERGY CASCADE

Starting from 

as initial condition, and replacing in the Navier-Stokes 
equation

• This process can be repeated, 
and smaller eddies are created 
until reaching the scale where the 
dissipative term dominates! 
Taylor & Green, Proc. Roy. Soc. A 
151, 421 (1935).
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TURBULENCE: THE NAVIER-STOKES EQUATIONS

• This leads naturally to a Fourier representation for the velocity in 
the momentum equation 

• Fourier representation 

• Energy spectrum 

• Large, energy containing eddies with correlation scale L. Small 
scale fluctuations with wavenumber k>>1/L.

∂v
∂t
+ v ⋅∇v = −∇P +ν∇2v+F 0=⋅∇ v



ENERGY TRANSFER AND TRIADIC INTERACTIONS

qpk +=z

⇒
∂vk
∂t

= − v p ⋅∇( )vq&' ()
p,q
∫ dpdq− ikPk −νk

2vk +Fk

∂v
∂t
+ v ⋅∇v = −∇P +ν∇2v+F



• Momentum equation 

 P is the pressure, F an external force, ν the kinematic viscosity, Ω the 
angular velocity, and u the velocity; incompressibility is assumed. 

• Quadratic invariants (F = 0, ν =0): 

        E = ∫ u2 d3x
H = ∫ u⋅ω d3x ω = ∇×u

• Reynolds, Rossby, and Ekman numbers 
  

 where LF is the forcing scale.

ROTATING FLOWS



INERTIA





• GHOST code, publicly available. 

• Visualizations done with VAPOR, publicly available. 

• Periodic boundary conditions. 

• Bounded domain. 

• Discrete set of inertial waves. 

• The number of modes that satisfy resonance conditions depends 
on wavenumber. 

• Natural representation in terms of Fourier modes. 

• External forces are body forces.

NUMERICAL SIMULATIONS



NON-HELICAL ROTATING TURBULENCE

Energy
Ro = 0.01 

5123 Enstrophy



WAVES IN ROTATING FLOWS

ω = ±Ω
kz
k

ux = ±iuy



WAVES OR EDDIES?

Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus, PoF 26, 035106 (2014). 
See also Hopfinger et al 1982, Bewley et al 2007, Bordes, Moisy, Dauxois and Cortet 2012

E(k,ω)
E(k)

kx = 0,ky =1

ω =Ω
kz
k



WAVES IN ROTATING FLOWS

This leads to a natural decomposition in spectral space: 

• 3D modes are “waves” (or “fast” modes, for sufficiently large Ro). 

• 2D modes are “eddies” (or “slow” modes).

3

the interacting triads [24]:

sk

k||

k
+ sp

p||

p
+ sq

q||

q
= O(Ro) with k + p + q = 0. (7)

However, the problem with wave turbulence theory is
that it is not valid for too small values of kk. In fact, the
predicted energy transfer is zero for kk = 0 [28] because
2D and 3D modes are decoupled in such theories. Similar
analysis is presented using two-point closures of turbu-
lence, such as the Eddy Damped Quasi-Normal Marko-
vian (EDQNM) closure developed earlier in the context
of rotating flows (see, e.g., [29]). Even a sophisticated
asymptotic quasi-normal Markovian theory, built on the
EDQNM closure [30, 31], does not deal with kk = 0.
Thus, while the gradual concentration of energy in close
proximity of the slow manifold can be theoretically justi-
fied to explain numerical and experimental observations,
the exact coupling between the slow manifold and the
3D modes leading to a transfer of energy from 3D to 2D
modes still remains an unresolved problem. The inverse
cascade of energy, that will be further elaborated upon
in Sec. IV, presumably happens in this slow manifold.

An alternative theory on the egression of columnar
structures is given by [12]; it is based on the conserva-
tion of linear momentum Pz = 1

2

R
V

R

(x ⇥ !)z dV and
of angular momentum Lz =

R
V

R

(x ⇥ u)zdV in the ax-
ial direction (within a cylinder of radius R), resulting
in a relative concentration of the kinetic energy density
within this cylinder where it disperses to form columnar
clouds. This holds in the linear time scale ⌦�1, when the
non-linear term is small and hence can be neglected in
comparison with the Coriolis term (U

0

⌧ ⌦L
0

). How-
ever, the percentage of total energy contained within the
cylinder falls as (⌦t)�1, so the columns eventually be-
come weak, although the energy density remains higher
within the cylinder than outside. The time scale asso-
ciated with this process, ⌧

⌦

⇠ ⌦�1, will be relevant for
the analysis of the inverse cascade regime in the following
sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, ‘Big whirls
have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.

The notion of inverse cascade of energy to large scales
is well known in 2D turbulence [32] (also see e.g., [17])
and may be justified in simple terms on the basis of
Fjørtoft’s theorem due to the conservation of quadratic
invariants (see, e.g., [25]). In other words, nonlinear tri-
adic interactions conserve both the energy and the en-
strophy, Z :=

⌦
!2

↵
/2, and as the latter is advected to-

wards smaller scales, a fraction of the energy cascades to-
wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization, s will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in a triad, further corrob-
orate the aforementioned argument [35].

In the previous subsection we have summarized theo-
ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
verse cascade to develop as in the case of 2D turbulence.
The strength of the coupling between the 2D and the
3D modes has been studied by [36] and also by [37] us-
ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
tating turbulence [38] and of ideal helical rotating flows
[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].

The decoupling is further illustrated below based on
the presentation in [37] and extended to consider the
flux of energy interchanged between the 2D and the 3D
modes. It is important to note that Refs. [37–39] studied
rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
considers the e↵ect of forcing.

We write wavenumbers in three-dimensional Fourier
space using cylindrical coordinates, k = (k?,kk), with
k? = (kx, ky, 0) = (⇢k,�k), k|| = (0, 0, kz) and k = |k|.
We denote the 2D modes in Fourier space as u

2D(k?),
and the 3D or wave modes as u

3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
Vk := {k s.t. |k| 6= 0 and k|| = 0}.

Then the velocity field u = (u, v, w) can be decomposed
as:

u(k) =
⇢

u

3D(k) if k 2Wk

u?(k?) + w(k?)ẑ if k 2 Vk
(8)
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ENERGY SPECTRUM OF ROTATING (NON-HELICAL) FLOWS

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009) 

Non-helical case: 
• An inverse cascade of 

energy develops for small 
Ro. 

• The flow becomes 
anisotropic. 

• The spectrum goes 
towards k⊥

-2 as rotation is 
increased (Ro decreased).

Ω≠0

Ω=0



• The interaction of waves and eddies slows down the cascade 
(Cambon and Jacquin 1989, Cambon, Mansour, and Godeferd 1997). 

• Following Kraichnan (1965) phenomenology, we can assume that the 
time to move energy across scales is increased by a factor τl /τΩ. 

• The inverse of the transfer time then becomes 1/τNL= τΩ /τl
2. 

• As a result of the resonant interactions, the flow also becomes 
anisotropic, with 1/τl ~ ul /l⊥. 

• The energy transferred between scales per unit of time is  

       ε ~ ul
2/τNL ~ ul

4/l⊥2, and ul
2 ~ l⊥. 

• Then the energy spectrum is E(k⊥) ~  k⊥-2 (Dubrulle 1992, Zhou 1995). 
• A more detailed derivation using two-point closures can be found, 

e.g., in Cambon and Jacquin (1989).

PHENOMENOLOGY OF ROTATING TURBULENCE



SPATIO-TEMPORAL SPECTRUM

Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus, PoF 26, 035106 (2014). 
See also Hopfinger et al 1982, Bewley et al 2007, Bordes, Moisy, Dauxois and Cortet 2012

E(k,ω)
E(k)

kx = 0,ky =1

ω =Ω
kz
k



Time scales: 
• Wave period 

• Non-linear time 

• Sweeping time

DOMINANT DECORRELATION TIMES

Clark di Leoni, Cobelli, Mininni, Dmitruk & Matthaeus, PoF 26, 035106 (2014)
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FIG. 4. (Color online) Correlation function Γ11(τ) for differ-
ent modes, the wave-like behavior is quite evident in the first
two panels. Time is normalized such that Γ11(τ) = 1/e at
a time of order unity. See text for the definition of τt. Top:
A mode with τω ≪ τsw. Middle: A mode with τω < τsw.
Here τω still dominates, and the correlation function shows
the oscillating behavior expected for a wave-like mode, but
with a slow decay in its modulation proportional to the non-
linear time (indicated by the arrow). Bottom: A mode with
τω > τsw, here all wave-like behavior is lost.

the absence of rotation, the isotropic spectrum has a nar-
row range of wave numbers compatible with Kolmogorov
scaling, followed by a bottleneck and a dissipative range.
In the rotating case the spectrum becomes steeper, as
expected.

The axisymmetric energy spectrum e(k⊥, k∥), obtained
after integrating the power of û(k, t) only over the az-
imuthal angle in Fourier space, provides more informa-
tion on the anisotropy of the flow. As rotation is along
the z axis, k∥ = kz. Figure 2 shows contour plots of
e(k⊥, k∥)/ sin(θk) for the runs with Ω = 4 and with
Ω = 8, and where θk = arctan(k⊥/k∥) is the colatitude
in Fourier space. For an isotropic flow (Ω = 0), contours
of e(k⊥, k∥)/ sin(θk) are circles. As rotation is increased,
energy becomes more concentrated near the axis with
k∥ = 0.

Based on the previous discussion on wave turbulence
theory, and on previous studies of decorrelation times in
isotropic turbulence [19–21] and in rotating flows [16],
we can expect several timescales to be relevant for our
studies. These timescales depend on the wave vector,
and assuming the shorter one dominates the dynamics,
different regions in the axisymmetric energy spectrum
e(k⊥, k∥) can be defined. The first timescale is the period
of the waves

τω(k) = Cω
k

2Ωk∥
, (15)

where Cω is a dimensionless constant of order unity.
This time should be compared with the eddy turnover

time τNL ∼ 1/[k
√

kE(k)]. Simple phenomenological ar-
guments suggest the isotropic energy spectrum in the
inertial range of rotating turbulence follows E(k) ∼
ϵ1/2Ω1/2k−2 [8, 10, 36]. Then, a possible estimation of
the eddy turnover time is

τNL(k) = CNL
1

ϵ1/4Ω1/4k1/2
, (16)

where CNL is another dimensionless constant of order
unity, and where ϵ is the energy injection rate. It is
worth noticing that the spectrum of rotating turbulence
is actually anisotropic and dependent on k∥ and k⊥ in-
stead of simply on k. However, for the purpose of the
discussion here, and as we are only concerned with order
of magnitude estimation of the timescales, we will use
the simplest isotropic expression of E(k).

Sweeping may be the dominant process in the decorre-
lation of Fourier modes when the sweeping time becomes
shorter than the wave period, as is the case in isotropic
turbulence [18–21], and as also found in simulations of ro-
tating turbulence at lower resolution [16]. The sweeping
time is

τsw(k) = Csw
1

Uk
, (17)

where Csw is a dimensionless constant of order unity. Fi-
nally, phenomenological theories of rotating turbulence
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inertial range of rotating turbulence follows E(k) ∼
ϵ1/2Ω1/2k−2 [8, 10, 36]. Then, a possible estimation of
the eddy turnover time is

τNL(k) = CNL
1

ϵ1/4Ω1/4k1/2
, (16)

where CNL is another dimensionless constant of order
unity, and where ϵ is the energy injection rate. It is
worth noticing that the spectrum of rotating turbulence
is actually anisotropic and dependent on k∥ and k⊥ in-
stead of simply on k. However, for the purpose of the
discussion here, and as we are only concerned with order
of magnitude estimation of the timescales, we will use
the simplest isotropic expression of E(k).

Sweeping may be the dominant process in the decorre-
lation of Fourier modes when the sweeping time becomes
shorter than the wave period, as is the case in isotropic
turbulence [18–21], and as also found in simulations of ro-
tating turbulence at lower resolution [16]. The sweeping
time is

τsw(k) = Csw
1

Uk
, (17)

where Csw is a dimensionless constant of order unity. Fi-
nally, phenomenological theories of rotating turbulence
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as

Eij(k,ω) =
1

2
û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function

Γij(k, τ) =
⟨û∗

i (k, t)ûj(k, t+ τ)⟩t
⟨|û∗

i (k, t)ûj(k, t)|⟩t
, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
integral timescale (see, e.g., [16, 17])

τD(k) =

∫ ∞

0
Γii(k, τ) dτ. (13)

We verified that no quantitative differences are obtained
by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
times.

C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.

In previous studies of rotating turbulence in periodic
domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =

√
3, and in a forced length scale

L = 2π/kF = 2π/
√
3. The amplitude of the force was

F0 = 0.277 in all the runs, and this value was chosen to
have an r.m.s. velocity close to 1 in the turbulent steady
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as

Eij(k,ω) =
1

2
û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function

Γij(k, τ) =
⟨û∗

i (k, t)ûj(k, t+ τ)⟩t
⟨|û∗

i (k, t)ûj(k, t)|⟩t
, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
integral timescale (see, e.g., [16, 17])

τD(k) =

∫ ∞

0
Γii(k, τ) dτ. (13)

We verified that no quantitative differences are obtained
by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
times.

C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.

In previous studies of rotating turbulence in periodic
domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =

√
3, and in a forced length scale

L = 2π/kF = 2π/
√
3. The amplitude of the force was

F0 = 0.277 in all the runs, and this value was chosen to
have an r.m.s. velocity close to 1 in the turbulent steady
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the system), and for very long times (at least twice the
slowest timescale in the flow).

In the following we present spectra Eij(k,ω) for several
numerical simulations, defined as

Eij(k,ω) =
1

2
û∗
i (k,ω)ûj(k,ω), (10)

where ûi(k,ω) is the Fourier transform in time and in
space of the i-component of the velocity field u(x, t), and
where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial
mode, and on their decorrelation time, can be obtained
also from the time correlation function

Γij(k, τ) =
⟨û∗

i (k, t)ûj(k, t+ τ)⟩t
⟨|û∗

i (k, t)ûj(k, t)|⟩t
, (11)

where ûi(k, t) is the Fourier transform in space of the
i-component of the velocity field, the brackets denote
time average, and only the real part is used. If the
mode ûi(k, t) is dominated by waves in a regime that
satisfies the hypothesis of weak turbulence theory, then
Γii(k, τ) ∼ cos(ωkτ). If nonlinear effects are important,
then the mode with wave vector k should be decorrelated
after a time τD(k) following an approximate exponential
decay

Γii(k, τ) ∼ e−τ/τD(k). (12)

In the following we will define τD as the time at which
the function Γ decays to 1/e of its initial value. Note
this definition is arbitrary, and some authors use the half-
width of the correlation function, or a value based on an
integral timescale (see, e.g., [16, 17])

τD(k) =

∫ ∞

0
Γii(k, τ) dτ. (13)

We verified that no quantitative differences are obtained
by using these other definitions, except for a multiplica-
tive factor of order one in the values of all decorrelation
times.

C. Numerical simulations

Computation of the functions described above require
a significant amount of storage. As a result, only mod-
erate resolution simulations can be performed. We per-
formed three simulations using grids ofN3 = 5123 points,
in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseu-
dospectral method, and evolved in time with a second
order Runge-Kutta scheme (for more details of the code,
see [29, 30]). The simulations were dealiased with the
2/3-rule (see, e.g., [29]).

The equations are written in dimensionless units. The
periodic domain has length λ0 = 2π, resulting in integer
wavenumbers and in a minimum wave number kmin =

2π/λ0 = 1. Per virtue of the 2/3-rule, the largest resolved
wave number is kmax = N/3, associated with the smallest
resolved wavelength λmin = 2π/kmax = 6π/N . With
this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 =
L0/U0 = 1, which we use as unit of time. Ω is then
measured in units of the inverse of time T0.

In previous studies of rotating turbulence in periodic
domains, it was found that if the forcing is applied at
intermediate scales (i.e., scales smaller than the size of
the domain), an inverse cascade develops and most of
the energy ends up in the 2D modes [31]. Evidence of
this inverse cascade has been also observed in experi-
ments [32]. It is unclear for the moment whether this
effect also takes place in homogeneous, unbounded flows,
such as those considered by wave turbulence theories [1].
As a result, we forced the system at the largest scales
available, to prevent the inverse cascade from develop-
ing. However, this has a caveat: the finite domain selects
a discrete set of inertial waves which are normal modes
of the domain (see, e.g., [4, 33]). As a result of the dis-
cretized wavenumbers, the number of modes that satisfy
the resonance condition (8) depends on the wavenumber,
and is smaller (or zero) for smaller wavenumbers, result-
ing in only near-resonances being available [33]. As this
effect is aggravated when domains with non-unity aspect
ratio are used, we restricted our study to boxes with as-
pect ratio of unity.

As we are also interested in correlation times, to pre-
vent imposing external correlation times with the forc-
ing we used a coherent forcing (in opposition to a time-
correlated, or delta-correlated in time forcing function).
We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTGy) cos(kTGz)x̂

− cos(kTGx) sin(kTGy) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept
constant in time. Although the forcing injects energy
directly only into the x- and y-components of the ve-
locity, the resulting flow is three-dimensional because of
pressure gradients that excite the remaining component
of the velocity field. This forcing injects no energy in
the 2D modes, and only affects directly a few modes in
Fourier space corresponding (for the choice kTG = 1)
to the mode k = (1, 1, 1) in the first quadrant, and the
modes obtained after reflections across the axes in Fourier
space. As will become evident later, forcing only these
modes is better for the excitation of waves than forcing,
e.g., all modes in a spherical shell in Fourier space. Fi-
nally, Taylor-Green forcing is of interest as it mimics the
flow generated in some experiments using two counter-
rotating disks [34, 35].

As explained above, the forcing was applied at modes
such as k = (1, 1, 1), which results in a forced wave
number kF = |k| =

√
3, and in a forced length scale

L = 2π/kF = 2π/
√
3. The amplitude of the force was

F0 = 0.277 in all the runs, and this value was chosen to
have an r.m.s. velocity close to 1 in the turbulent steady
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other time, and we should expect correlation functions
Γii(k, τ) for these modes to be harmonic. Modes out-
side that region should decorrelate with the fastest time,
which is the sweeping time. Finally, modes outside the re-
gion enclosed by the latter curve have the eddy turnover
time shorter than the wave period, and as a result those
modes cannot be considered as waves slowly modulated
by eddies. In fact, for those modes the effect of rota-
tion should be negligible. These considerations will be
important in the next subsection. To plot the curves
τω(k) = τsw(k) and τω(k) = τNL(k), we used Cω = 1.3,
CNL = 1, Csw = 2.3; these values were obtained from the
analysis of the data in Sec. III C.

In table I the fraction of the energy that is contained
in 2D modes, in modes with τω < τsw, and in modes
with τω < τNL is shown for the simulations with Ω = 4
and 8. As mentioned previously, energy becomes more
concentrated near the axis with k∥ = 0 in the presence
of rotation. However, the fraction of the energy in 2D
modes actually decreases as Ω is increased from 4 to 8,
and more of the injected energy remains in the modes
with τω < τsw (although a significant portion of the en-
ergy, ≈ 30%, still escapes outside this region and concen-
trates in the 2D modes). The energy that is concentrated
in these modes comes solely from the leakage from the
3D modes, as no energy is injected directly into the 2D
modes by the forcing we are using.

The final motivation to use Taylor-Green forcing now
becomes apparent. The modes excited by the forcing are
in the region τω < τsw, and favors modes dominated by
the waves. As a result, all energy in the region with
τω > τsw, and in the region with τω > τNL, can only be
accounted for by the nonlinear transfer of energy from
the modes dominated by the wave time. Weak turbulence
theories [6] cannot account for this transfer.

It should also be noted that in Fig. 2 the energy does
not accumulate near the modes with τω = τNL, as it is
expected in theories dealing with the concept of critical
balance [24]. In critical balance, it is argued that in the
case of strong turbulence, energy in the weak turbulence
modes cascades towards larger values of k⊥, while energy
in modes with τω < τNL (which are outside the domain
of weak turbulence, and are, therefore, strong) cascade
inversely towards smaller values of k⊥ [24, 37]. This es-
tablishes a balance with τω = τNL; energy accumulates
in the modes that satisfy this balance and then cascades
towards larger values of k along this curve. No such ac-
cumulation is visible in Fig. 2, and as only modes with
τω < τsw are forced, the energy in the domain τω > τNL

can only come from a transfer from the wave modes to the
vortical modes in the direction opposite to that needed
to establish the balance.

B. Wave vector and frequency spectrum

Figure 3 shows the wave vector and frequency spec-
trum E11(k,ω)/E11(k) for different values of k, where

E11(k) =

∫

E11(k,ω) dω. (18)

With this choice for the normalization, the frequencies
that concentrate most of the energy for each k are more
clearly visible.

When kx = 0, ky = 0, and kz is varied, most of
the energy is concentrated near ω = 2Ω, especially for
kz < 10. For larger values of kz the width of the band
that concentrates most of the energy increases (compare
this with the regions in Fig. 2 corresponding to modes
with τω(k) < τsw(k), and to modes with τω(k) < τNL).
The wave vector and frequency spectrum for the other
components of the velocity were also calculated, showing
similar behavior.

When kx = 0, ky is kept fixed, and kz is varied, most of
the energy is still concentrated near the linear dispersion

relation ω = 2Ωkz/
√

k2y + k2z in the cases with ky = 1

and ky = 5. However, for ky = 10 and larger, energy is
more evenly distributed among all values of ω, and most
of the energy is in the modes with ω ≈ 0.

Leaving aside the energy in the modes with ω ≈ 0,
the modes that concentrate energy near the linear dis-
persion relation could in principle be treated by weak
turbulence theories, where energy is transferred through
wave interactions. But it is worth pointing out also that
the accumulation of energy in these fast modes makes (at
least for a subset of the wave numbers) some magnitudes
in the turbulent flow treatable by RDT [2, 14]. This has
been used to study the early time evolution of the system
when rotation is turned on in an initially isotropic flow
[38]).

C. Correlation functions and decorrelation times

Figure 4 shows the time correlation function
Γ11(k, τ/τt) for the x-component of the velocity, with the
time being normalized by a total effective time τt, and
for different modes in Fourier space. The total effective
time is defined as

(

1

τt

)2

=

(

1

τω

)2

+

(

1

τsw

)2

, (19)

such that for τω ≪ τsw, τt ≈ τω, and for τω ≫ τsw,
τt ≈ τsw. With this definition, Γ11(τ/τt) = 1/e at a time
τ/τt of order unity for all modes.

By inspection of these functions, we identified three
different behaviors that are illustrated by a few modes in
the figure. Modes near the k∥ axis (and for sufficiently
small k∥) have Γ ∼ cos(ωkτ), the behavior expected for
waves (τt ≈ τω for these wavenumbers). As k∥ is in-
creased (and as k⊥ is increased as well), the correlation
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FIG. 5. (Color online) Top: Decorrelation time τD for the modes with k∥ = 0, as a function of k⊥, and for the three different
values of Ω. Bottom: Same for the modes with k⊥ = 0, as a function of k∥. In all figures, the data corresponds to the dots
connected by dashed lines; the wave period τω, the sweeping time τsw, the nonlinear time τNL, and the total effective time τt
are given as references.
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⊥ + k2
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curves are as in Fig. 5.

(see, e.g., [8, 10, 36]) often also consider an energy cas-
cade transfer time τtr ∼ τNL(τNL/τω), where the ratio
of timescales between parenthesis expresses the fact that
waves slow down the energy cascade.

In Fig. 2 we indicate two curves, corresponding to the
modes that satisfy the relations τω(k) = τsw(k), and
τω(k) = τNL(k). Modes inside the region enclosed by
the former curve have the wave period faster than any
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other time, and we should expect correlation functions
Γii(k, τ) for these modes to be harmonic. Modes out-
side that region should decorrelate with the fastest time,
which is the sweeping time. Finally, modes outside the re-
gion enclosed by the latter curve have the eddy turnover
time shorter than the wave period, and as a result those
modes cannot be considered as waves slowly modulated
by eddies. In fact, for those modes the effect of rota-
tion should be negligible. These considerations will be
important in the next subsection. To plot the curves
τω(k) = τsw(k) and τω(k) = τNL(k), we used Cω = 1.3,
CNL = 1, Csw = 2.3; these values were obtained from the
analysis of the data in Sec. III C.

In table I the fraction of the energy that is contained
in 2D modes, in modes with τω < τsw, and in modes
with τω < τNL is shown for the simulations with Ω = 4
and 8. As mentioned previously, energy becomes more
concentrated near the axis with k∥ = 0 in the presence
of rotation. However, the fraction of the energy in 2D
modes actually decreases as Ω is increased from 4 to 8,
and more of the injected energy remains in the modes
with τω < τsw (although a significant portion of the en-
ergy, ≈ 30%, still escapes outside this region and concen-
trates in the 2D modes). The energy that is concentrated
in these modes comes solely from the leakage from the
3D modes, as no energy is injected directly into the 2D
modes by the forcing we are using.

The final motivation to use Taylor-Green forcing now
becomes apparent. The modes excited by the forcing are
in the region τω < τsw, and favors modes dominated by
the waves. As a result, all energy in the region with
τω > τsw, and in the region with τω > τNL, can only be
accounted for by the nonlinear transfer of energy from
the modes dominated by the wave time. Weak turbulence
theories [6] cannot account for this transfer.

It should also be noted that in Fig. 2 the energy does
not accumulate near the modes with τω = τNL, as it is
expected in theories dealing with the concept of critical
balance [24]. In critical balance, it is argued that in the
case of strong turbulence, energy in the weak turbulence
modes cascades towards larger values of k⊥, while energy
in modes with τω < τNL (which are outside the domain
of weak turbulence, and are, therefore, strong) cascade
inversely towards smaller values of k⊥ [24, 37]. This es-
tablishes a balance with τω = τNL; energy accumulates
in the modes that satisfy this balance and then cascades
towards larger values of k along this curve. No such ac-
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+

(
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τsw

)2

, (19)

such that for τω ≪ τsw, τt ≈ τω, and for τω ≫ τsw,
τt ≈ τsw. With this definition, Γ11(τ/τt) = 1/e at a time
τ/τt of order unity for all modes.

By inspection of these functions, we identified three
different behaviors that are illustrated by a few modes in
the figure. Modes near the k∥ axis (and for sufficiently
small k∥) have Γ ∼ cos(ωkτ), the behavior expected for
waves (τt ≈ τω for these wavenumbers). As k∥ is in-
creased (and as k⊥ is increased as well), the correlation
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If isotropy is recovered:
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Eqs. (15), (16), and (17) were chosen from the data in
Figs. 5, 6, and 7, and are the same for all runs (inde-
pendently of the mode k studied, and of the value of Ω).
Note these amplitudes only account for an arbitrariness
in the definition of the decorrelation time, which from
the time correlation function and as explained above can
be defined based on the time to decay to 1/e of its value,
based on its half-width, or on an integral timescale.

From these observations, it becomes apparent that the
effective time τt gives a good approximation to the actual
decorrelation time τD in all figures. It is interesting that
the choice to average the relevant times in Eq. (19) is
similar to the choice used in the simplest EDQNMmodels
of rotating turbulence to estimate the eddy damping [2,
3].

From these figures, we can also conclude that the
modes in the region enclosed by the curve τω = τsw in
Fig. 2 have wave-like behavior with decorrelation domi-
nated by the waves, while the rest of the modes are dom-
inated by sweeping effects (similar to what happens in
isotropic and homogeneous turbulence [19]).

D. Decorrelation times and anisotropy

The fact that modes with τω > τsw have decorrela-
tion dominated by the sweeping time should not be inter-
preted as that the effects of waves and of rotation are neg-
ligible for these modes. This is evidenced quite clearly in
Fig. 2, where anisotropic spectral distribution of energy
can be observed even for modes with τω > τsw. Isotropy
is expected to be recovered at the Zeman wavenumber
kΩ for which τω(kΩ) = τNL(kΩ) [39]. This wavenumber
is equivalent to the Ozmidov wavenumber in a stratified
flow, and that isotropy is recovered in rotating turbu-
lence at that wave number has been recently confirmed
in high resolution numerical simulations [10].

From the expressions in Sec. III A, assuming that when
isotropy is recovered k⊥ ≈ k∥ and therefore k ≈

√
2k∥,

we can write the condition τω = τNL at k = kΩ as

CNL

ϵ1/4Ω1/4k1/2Ω

=
Cω√
2Ω

⇒ kΩ = CΩ

(

Ω3

ϵ

)1/2

,

where CΩ = 2(CNL/Cω)2 ≈ 1.18.
This expression is compatible with the one found in

[10], where CΩ = 1 was found from direct observation
of the scale at which isotropy was recovered. For the
simulation with Ω = 4, kΩ ≈ 150 (which lies in the dis-
sipative range of the simulation), and for the simulation
with Ω = 8, kΩ ≈ 460 (which lies outside the domain of
resolved scales).

It is interesting that the characteristic timescales dis-
cussed here present another interpretation of the Zeman
scale: isotropy is recovered not when all modes satisfy
the condition τNL ≤ τω (which happens in the runs with
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FIG. 8. (Color online) Top: Decorrelation time τD for the
modes with k∥ = 0 as a function of k⊥, for runs with the
same Ω but different spatial resolutionN and Reynolds num-
ber. The time τD(N = 512) is for the run with N = 512 linear
resolution, while τD(N = 256) is for the run with N = 256.
Bottom: Same for the modes with k⊥ = 0, as a function of
k∥. In all figures, the data corresponds to the symbols con-
nected by dashed lines. The curves with the dependence on
the wavenumber of the wave period τω, of the sweeping time
τsw, and of the total effective time τt are given as references.

Ω = 4 and 8 at much larger wave numbers, see Fig. 2),
but when a significant fraction of the modes satisfy this
condition (i.e., when the modes in the diagonal with
k⊥ ≈ k∥ satisfy the equality of timescales).

IV. CONCLUSIONS

The results presented here indicate that: (1) A sig-
nificant fraction of the energy is concentrated in modes
with ω ≈ 0, which have correlation functions correspond-
ing to that of strong turbulence (i.e., vortical modes). In
this respect, the simulations are limited to finite domains
and we cannot conclude from this what the behavior is
for a homogeneous (infinite) flow as is often considered in
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nificant fraction of the energy is concentrated in modes
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• Do rotating flows recover isotropy at small scales? 
• Since we don’t feel the rotation of the Earth, we know it should! 
• How does rotating turbulence look like in that multi-scale case? 
• We can expect the spectrum to be 

(with 2 ≤ α ≤ 2.5). The transition between the two spectra 
should take place when the eddy turnover time becomes of the 
same order as the wave time (Zeman 1994):
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• 30723 simulation of forced turbulence.
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FIGURE 3. Isocontours of the axisymmetric energy spectrum e(k?, kk)/ sin ✓ : (a) at t = 0
and (b) after rotation is turned on (averaged over 5 6 t 6 6). Only wavenumbers up to
k
max

/2 = 512 are shown (with k
max

the maximum wavenumber resolved in the computation).
The insets in each figure show a detail of the isocontours for small wavenumbers. Near-
circular contour levels at t = 0 for all wavenumbers indicate isotropy. At late times,
elliptical isocontours are an indication that anisotropy has developed, largely so for small
wavenumbers.

rotation, E2D/E ⇡ 0.25 (also corresponding to t = 0 of the run with rotation), while
in the run with rotation E2D/E ⇡ 0.72, i.e. almost three times larger and with most
of the energy in 2D modes. In figure 2 (solid line) is also shown the ratio of the
perpendicular to the parallel integral scales of the flow. These scales are defined from
the reduced spectra as

Lk = 2⇡

Z
k�1

k E(kk) dkk
Z

E(kk) dkk
, L? = 2⇡

Z
k�1

? E(k?) dk?
Z

E(k?) dk?
. (4.3)

While at t = 0 (i.e. in the turbulent state of the run with negligible rotation) L?/Lk ⇡ 1,
corresponding to a flow that is isotropic, as time evolves this ratio fluctuates around 2,
indicating that large-scale anisotropy develops as a result of the increased rotation.
Since in both cases (t = 0 and t > 0) the forcing is the same and since we started
the strongly rotating run from the last state of the run with Ro � 1, we can safely
conclude that the source of anisotropy displayed for example in figure 2 is not due to
the forcing but rather is due to the nonlinear dynamics of this strongly rotating and
turbulent flow.

A more complete picture of the development of anisotropy as the result of rotation
is given by the axisymmetric energy spectrum e(k?, kk) at early and late times (see
figure 3). While at t = 0 the contour levels of e(k?, kk)/ sin ✓ are nearly circular,
indicating isotropy at all wavenumbers, the spectrum at late times shows elliptical
isocontours for small wavenumbers, with more energy in modes with kk ⇡ 0. As the
wavenumber increases, the contour levels become less elliptical, an indication that
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FIGURE 4. Fluxes of energy (solid line) and helicity (dashed line), normalized by the forcing
wavenumber, kF = 4, as a function of (isotropic) wavenumber, and averaged for 5 6 t 6 6.
The Zeman wavenumber is indicated by an arrow. Note the seamless transition from the
anisotropic to the isotropic regime at small scale. Similar results obtain when plotting the
fluxes against k?. In the inset is given the spectrum of relative helicity r(k) = H(k)/[kE(k)],
with the forcing and Zeman wavenumbers, kF and k⌦ , indicated by arrows.

small scales are more isotropic. This re-isotropization at small scales will be studied in
more detail below using the angular distribution of energy for different co-latitudes ✓
in Fourier space.

It is perhaps remarkable that the fluxes of energy and helicity, given in figure 4,
do not show any transition at the Zeman scale: the fluxes continue to be constant in
both direct cascades, with an overall excess of normalized helicity flux, as expected
for this value of the Rossby number, an excess that persists in the isotropy range.
There is a smooth apparently seamless transition from one (anisotropic, Coriolis)
subrange to the other (isotropic, Kolmogorov) subrange, indicative of a dual cascade
with constant energy and helicity fluxes. The constancy of flux persists up to slightly
beyond wavenumber k ⇡ 100, after which dissipative effects are being felt (with the
maximum wavenumber resolved in the computation k

max

= 1024). Note again that
no hyperviscosity scheme is employed in this DNS that would prolong the second
isotropic range to small scales closer to the cut-off. Finally, at wavenumbers smaller
than the forcing, an incipient inverse cascade of energy, indicated by the negative
energy flux, can also be observed even though it occurs over a narrow range of
wavenumbers.

In the inset of figure 4 is given the relative helicity r(k) = H(k)/[kE(k)]. One
observes that the relative helicity never reaches the maximum allowed value of
unity, although it is quite close to it at the forcing wavenumber. At wavenumbers
immediately larger than k⌦ the relative helicity decreases with increasing wavenumber,
approaching the well-known decrease r(k) ⇠ 1/k of isotropic helical turbulence for
wavenumbers close to and larger than k⌦ , but smaller than k ⇡ 100. A clearer, but
shallower, power law (⇠k�1/2) is found in the dissipative range, beyond k ⇡ 100. This
latter behaviour has been reported before in simulations of isotropic helical turbulence
(Mininni, Alexakis & Pouquet 2008): it is known that pointwise helicity grows in
a turbulent flow (Matthaeus et al. 2008), and that small-scale vortical structures in
non-rotating turbulence tend to be helical.

Figure 5 presents the angular distribution of the energy spectrum e(k?, kk) defined
in (4.1) (see also figure 3): there is a wide distribution of power-law indices from
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see also Delache, Cambon and Godeferd (2014)



• We can decompose the velocity field as
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lence).
Time correlation functions and decorrelation times

were computed before for rotating fluids, with the fo-
cus on their relevance to predict the acoustic emission
produced by a turbulent flow, and on the effect of flow
anisotropy in the decorrelation time [16]. For magne-
tohydrodynamic flows, time correlation functions and
decorrelation times were recently computed in [17]. In
isotropic and homogeneous turbulence, a proper under-
standing of the decorrelation time is needed to correctly
obtain the frequency spectrum from the Kolmogorov
spectrum in terms of wavenumbers [18]. In this latter
case, the dominant timescale for all modes is the sweep-
ing time, associated with the interactions of the small-
scale eddies with the large-scale energy containing eddies
[19–21]. Finally, time correlation functions are also im-
portant in turbulence closure models, for the dynamics
of Lagrangian particles [22], and for the computation of
turbulent diffusion of passive scalars (see, e.g., [23]).

II. ROTATING FLOWS

A. Waves and eddies

The dynamics of incompressible rotating flows is de-
scribed by the Navier-Stokes equations in a rotating
frame,

∂u

∂t
= −ω × u− 2Ω× u−∇P + ν∇2u+ F, (1)

together with the incompressibility condition

∇ · u = 0. (2)

In these equations, u is the velocity, ω = ∇ × u is the
vorticity, P is the total pressure (including the centrifugal
term, and normalized by the uniform fluid mass density),
Ω is the rotation frequency, the rotation axis is in the z
direction with Ω = Ωẑ, F is an external mechanical force
per unit of mass density, and ν is the kinematic viscosity.

Solutions to these equations can be characterized by
two dimensionless parameters, the Reynolds number

Re =
UL

ν
, (3)

and the Rossby number

Ro =
U

2LΩ
, (4)

where U is the r.m.s. velocity, and L is the forcing scale.
In the ideal case and in the absence of forcing, the

linearized equations have helical waves hs as solutions,
with s = ±1 corresponding to the two possible circular
polarizations such that ik × hs = skhs, and with k the
wave vector. These waves correspond to inertial waves
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FIG. 1. (Color online) Isotropic energy spectrum E(k) in
the simulation with Ω = 0, and reduced perpendicular en-
ergy spectra E(k⊥) in the simulations with Ω = 4 and 8. In
all three simulations Re ≈ 5000, while Ro ≈ ∞, 0.03, and
0.015 respectively. Kolmogorov and ∼ k−2

⊥ slopes are shown
as a reference. The simulation without rotation has a spec-
trum with a narrow range of scales arguably compatible with
Kolmogorov scaling and followed by a bottleneck and a dis-
sipative range, while the runs with rotation display a steeper
spectrum.

with dispersion relation ωk = s2Ωkz/k. The velocity
field at wave vector k can then be decomposed as [5]

u(k, t) = a+(k, t)h+ + a−(k, t)h−. (5)

In the nonlinear case, a large number of modes are ex-
cited (and nonlinearly coupled) in the velocity field. As
a rotating flow can sustain both waves and eddies, for
sufficiently strong rotation it is safe to assume that for a
large number of wave vectors k the waves will be faster
than the eddies. Then, in wave turbulence theories the
amplitudes as(k, t) are further decomposed into

as(k, t) = As(T )e
iωkt, (6)

where eiωkt is the fast variation at timescale τω = 2π/ωk

associated with the waves, and As(T ) is a slowly varying
modulation on a timescale T ∼ Ro t associated with the
eddies.

Replacing this decomposition in Eq. (1), it is obtained
that energy is only transferred between modes with wave
vectors k, p, and q such that [2, 3, 5]

k+ p+ q = 0, (7)

and

ωk + ωp + ωq = 0. (8)

The last relation, corresponding to the resonant condi-
tion of the waves to have net transfer of energy when in-
tegrated over times longer than the wave period, is also
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cited (and nonlinearly coupled) in the velocity field. As
a rotating flow can sustain both waves and eddies, for
sufficiently strong rotation it is safe to assume that for a
large number of wave vectors k the waves will be faster
than the eddies. Then, in wave turbulence theories the
amplitudes as(k, t) are further decomposed into

as(k, t) = As(T )e
iωkt, (6)

where eiωkt is the fast variation at timescale τω = 2π/ωk

associated with the waves, and As(T ) is a slowly varying
modulation on a timescale T ∼ Ro t associated with the
eddies.

Replacing this decomposition in Eq. (1), it is obtained
that energy is only transferred between modes with wave
vectors k, p, and q such that [2, 3, 5]
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and
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Craya (1958), Herring (1974), Waleffe (1993).
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qpk +=z

⇒
∂vk
∂t

= − v p ⋅∇( )vq&' ()
p,q
∫ dpdq− ikPk −νk

2vk +Fk

∂v
∂t
+ v ⋅∇v = −∇P +ν∇2v+F



• The evolution of the kinetic energy in shells in Fourier space is 

• In rotating flows we have Rossby waves, that slow down the energy 
transfer through resonant interactions (Cambon and Jacquin 1989, 
Cambon, Mansour, and Godeferd 1997, also WT see Galtier 2003):

TRIADIC INTERACTIONS IN ROTATING TURBULENCE

k+p+q= 0

∂vk
∂t

= − v p ⋅∇( )vq%& '(
p,q
∫ dpdq− ikPk −νk

2vk +Fk

v p ⋅∇( )vq#$ %&
p,q
∫ dpdq→ As,p ⋅∇( )As,q#$ %&

p,q
∫ ei(ωs,k+ωs,p+ωs,q )t

uk →As,ke
iωs,kt

ωs,k +ωs,p +ωs,q = sk
kz
k
+ sp

pz
p
+ sq

qz
q
= 0



• Instability theorem (Waleffe 
1993). 

• However, this is not valid for 
too small values of kz. 

• See Lamriben, Cortet & Moisy 
2011 for an experimental 
study of anisotropic transfer.
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of helicity in the inverse cascade range. We present re-
sults from numerical simulations that use a subgrid scale
model developed in [20]; this model was validated against
DNS of rotating flows in [21–23]. We show that the two

observed spectra, viz., ⇠ k
�5/3
? and ⇠ k�3

? can arise in
full simulations (simulations that resolve all triadic inter-
actions and account for coupling between the 2D and the
3D modes). When the forcing is isotropic, energy goes
from the 3D to the 2D modes and a ⇠ k�3

? spectrum
results for the energy in the slow modes. When more en-
ergy is pumped into the 2D modes, less energy goes from

the 3D to the 2D modes and a ⇠ k
�5/3
? spectrum is seen

for the slow modes.
The kinematics of the nonlinear advection term also

changes significantly as the spectra of slow modes change

from ⇠ k�3

? to ⇠ k
�5/3
? . We study the velocity gra-

dient tensor in all simulations and compute the largest
eigenvalue of the rate of strain tensor. For the case of
anisotropic forcing when the flux of energy between the
3D and the 2D modes reverses and energy at large scales
goes from the 2D to the 3D modes, a significant amount
of shear is created at large scales. This introduces a new
shear timescale ⌧sh that is independent of wavenumber.
As a result, the spectrum for the total energy approaches
a ⇠ k�1 power law.

The remainder of this paper is organized as follows. In
Sec. II we discuss previous results, introduce equations
and notations used in the rest of the paper, and derive
equations to study the coupling between modes and the
energy transfer between scales. In Sec. III we present
the LES model used in the numerical simulations and
describe all the runs as well as the di↵erent spectra used
to characterize scaling laws in the inverse cascade range.
Finally, in Sec. IV we present and discuss the numerical
results, while in Sec. V we conclude with brief remarks
and pointers to some open questions.

II. INERTIAL WAVES AND ENERGY
TRANSFER TO THE SLOW MANIFOLD

A. Equations

The non-dimensionalized incompressible Navier-Stokes
equations with global rotation, ⌦ = ⌦ẑ, are as follows:

@tu+ (u ·r)u+
1

Ro
ẑ ⇥ u = �rP +

1

Re
r2

u+ f , (1)

r · u = 0 , (2)

where u is the instantaneous velocity field, P is the
pressure term, f is an external force per unit of mass,
the Rossby number is Ro = U

0

(2L
0

⌦)�1 (where U
0

and L
0

are respectively normalized velocity and length
scales taken to be unity) and the Reynolds number is
Re = U

0

L
0

/⌫ (where ⌫ is the kinematic viscosity).
The forcing term f is introduced in the Navier-Stokes

equation to study the inverse cascade of energy. In the

simulations presented in this paper, besides Re and Ro
defined at characteristic length scales, we will be inter-
ested primarily in the Reynolds and Rossby numbers
based on the forcing scale Lf , at which the external force
is applied. The latter quantities are defined as follows:

Ref =
LfU

⌫
, (3)

and

Rof =
U

2Lf⌦
, (4)

where U is the r.m.s. velocity before the inverse cascade is
initiated (or equivalently, the r.m.s. velocity at the forc-
ing scale at any time during the simulation) in units of
U
0

. The time-scale associated with forcing wavenumber
is defined as,

⌧f :=
Lf

U
. (5)

B. Resonant interactions, slow manifold, and
large-scale structures

The linear, inviscid approximation of Eq. (1) in the ab-
sence of forcing has wave solutions called inertial waves
[10]. In the language of wave turbulence theory, the in-
viscid version of Eq. (1) can be re-written as [24]:
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where ? denotes complex conjugate, C
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spp)(h⇤
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⇥ h⇤
s
q

) · h⇤
s
k

/2 is the modal transfer coe�cient,
and Ro is assumed to be small and therefore repre-
sents rapid rotation (hence weak nonlinearity). Note that
Eq. (6) is not closed and, hence, any practical solution
can be realized based on an equivalent closed set of equa-
tions (see e.g. [25] for a thorough discussion on closed
models). Furthermore, the Craya-Herring helical basis
hs [26, 27] has been used in deriving Eq. (6) with the
canonical basis corresponding to a given wavevector k̂,
 ̂ := k̂ ⇥ ẑ and k̂ ⇥  ̂. The amplitude as of u is asso-
ciated with the helical wave with a dispersion relation

for the wave frequency: !s(k) = 2⌦s
kk
k . Each wave vec-

tor is associated with two waves of opposite polarization,
s = ±1. Clearly, !s(k) = 0 implies a flow restricted to
a plane perpendicular to the rotation axis (i.e., kk = 0).
Hence, 2D modes are also known as slow modes. In other
words, 2D modes correspond to vortical motions with no
fast wave modulation.
The mechanism of transfer of energy towards two di-

mensional modes that is responsible for the formation of
Taylor columns is based on near resonant condition of
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the interacting triads [24]:

sk
k||

k
+ sp

p||

p
+ sq

q||

q
= O(Ro) with k+ p+ q = 0. (7)

However, the problem with wave turbulence theory is
that it is not valid for too small values of kk. In fact, the
predicted energy transfer is zero for kk = 0 [28] because
2D and 3D modes are decoupled in such theories at low-
est order. Similar analysis is presented using two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian (EDQNM) closure developed earlier
in the context of rotating flows (see, e.g., [29]). Even
a sophisticated asymptotic quasi-normal Markovian the-
ory, built on the EDQNM closure [30, 31], does not deal
with kk = 0. Thus, while the gradual concentration of
energy in close proximity of the slow manifold can be the-
oretically justified to explain numerical and experimental
observations, the exact coupling between the slow man-
ifold and the 3D modes leading to a transfer of energy
from 3D to 2D modes still remains an unresolved prob-
lem. The inverse cascade of energy, that will be further
elaborated upon in Sec. IV, presumably happens in this
slow manifold.

An alternative theory on the egression of columnar
structures is given by [12]; it is based on the conserva-
tion of linear momentum Pz = 1

2

R
V
R

(x ⇥ !)z dV and

of angular momentum Lz =
R
V
R

(x ⇥ u)zdV in the ax-
ial direction (within a cylinder of radius R), resulting
in a relative concentration of the kinetic energy density
within this cylinder where it disperses to form columnar
clouds. This holds in the linear time scale ⌦�1, when the
non-linear term is small and hence can be neglected in
comparison with the Coriolis term (U

0

⌧ ⌦L
0

). How-
ever, the percentage of total energy contained within the
cylinder falls as (⌦t)�1, so the columns eventually be-
come weak, although the energy density remains higher
within the cylinder than outside. The time scale asso-
ciated with this process, ⌧

⌦

⇠ ⌦�1, will be relevant for
the analysis of the inverse cascade regime in the following
sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, ‘Big whirls
have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.

The notion of inverse cascade of energy to large scales
is well known in 2D turbulence [32] (also see e.g., [17])
and may be justified in simple terms on the basis of
Fjørtoft’s theorem due to the conservation of quadratic
invariants (see, e.g., [25]). In other words, nonlinear tri-
adic interactions conserve both the energy and the en-
strophy, Z :=

⌦
!2

↵
/2, and as the latter is advected to-

wards smaller scales, a fraction of the energy cascades to-
wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization s, will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in all triads, further cor-
roborate the aforementioned argument [35].
In the previous subsection we have summarized theo-

ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
verse cascade to develop as in the case of 2D turbulence.
The strength of the coupling between the 2D and the
3D modes has been studied by [36] and also by [37] us-
ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
tating turbulence [38] and of ideal helical rotating flows
[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].
The decoupling is further illustrated below based on

the presentation in [37] and extended to consider the
flux of energy interchanged between the 2D and the 3D
modes. It is important to note that Refs. [37–39] studied
rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
considers the e↵ect of forcing.
We write wavenumbers in three-dimensional Fourier

space using cylindrical coordinates, k = (k?,kk), with
k? = (kx, ky, 0) = (⇢k,�k), k|| = (0, 0, kz) and k = |k|.
We denote the 2D modes in Fourier space as u

2D(k?),
and the 3D or wave modes as u

3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
Vk := {k s.t. |k| 6= 0 and k|| = 0}.

Then the velocity field u = (u, v, w) can be decomposed
as:

u(k) =

⇢
u

3D(k) if k 2 Wk

u?(k?) + w(k?)ẑ if k 2 Vk
(8)

Motivation
Rotating flows: simulations and phenomenology

Rotating flows: slow manifold dynamics
Weak-wave turbulence theory

Coupled dynamics of energy and helicity
Wave turbulence schematic and concluding remarks

Waves
Vortices
Inverse energy cascade

Instability thoerem (moving energy towards 2D vortical modes)

Advection term: (u ·r)u F .T . ! P
k=p+q

pu
p

u
q

moves energy across

scales vía triadic interactions.
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The rate of energy transfer can 
be estimated as
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of helicity in the inverse cascade range. We present re-
sults from numerical simulations that use a subgrid scale
model developed in [20]; this model was validated against
DNS of rotating flows in [21–23]. We show that the two

observed spectra, viz., ⇠ k
�5/3
? and ⇠ k�3

? can arise in
full simulations (simulations that resolve all triadic inter-
actions and account for coupling between the 2D and the
3D modes). When the forcing is isotropic, energy goes
from the 3D to the 2D modes and a ⇠ k�3

? spectrum
results for the energy in the slow modes. When more en-
ergy is pumped into the 2D modes, less energy goes from

the 3D to the 2D modes and a ⇠ k
�5/3
? spectrum is seen

for the slow modes.
The kinematics of the nonlinear advection term also

changes significantly as the spectra of slow modes change

from ⇠ k�3

? to ⇠ k
�5/3
? . We study the velocity gra-

dient tensor in all simulations and compute the largest
eigenvalue of the rate of strain tensor. For the case of
anisotropic forcing when the flux of energy between the
3D and the 2D modes reverses and energy at large scales
goes from the 2D to the 3D modes, a significant amount
of shear is created at large scales. This introduces a new
shear timescale ⌧sh that is independent of wavenumber.
As a result, the spectrum for the total energy approaches
a ⇠ k�1 power law.

The remainder of this paper is organized as follows. In
Sec. II we discuss previous results, introduce equations
and notations used in the rest of the paper, and derive
equations to study the coupling between modes and the
energy transfer between scales. In Sec. III we present
the LES model used in the numerical simulations and
describe all the runs as well as the di↵erent spectra used
to characterize scaling laws in the inverse cascade range.
Finally, in Sec. IV we present and discuss the numerical
results, while in Sec. V we conclude with brief remarks
and pointers to some open questions.

II. INERTIAL WAVES AND ENERGY
TRANSFER TO THE SLOW MANIFOLD

A. Equations

The non-dimensionalized incompressible Navier-Stokes
equations with global rotation, ⌦ = ⌦ẑ, are as follows:
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/⌫ (where ⌫ is the kinematic viscosity).
The forcing term f is introduced in the Navier-Stokes

equation to study the inverse cascade of energy. In the

simulations presented in this paper, besides Re and Ro
defined at characteristic length scales, we will be inter-
ested primarily in the Reynolds and Rossby numbers
based on the forcing scale Lf , at which the external force
is applied. The latter quantities are defined as follows:

Ref =
LfU
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and

Rof =
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2Lf⌦
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where U is the r.m.s. velocity before the inverse cascade is
initiated (or equivalently, the r.m.s. velocity at the forc-
ing scale at any time during the simulation) in units of
U
0

. The time-scale associated with forcing wavenumber
is defined as,

⌧f :=
Lf

U
. (5)

B. Resonant interactions, slow manifold, and
large-scale structures

The linear, inviscid approximation of Eq. (1) in the ab-
sence of forcing has wave solutions called inertial waves
[10]. In the language of wave turbulence theory, the in-
viscid version of Eq. (1) can be re-written as [24]:
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/2 is the modal transfer coe�cient,
and Ro is assumed to be small and therefore repre-
sents rapid rotation (hence weak nonlinearity). Note that
Eq. (6) is not closed and, hence, any practical solution
can be realized based on an equivalent closed set of equa-
tions (see e.g. [25] for a thorough discussion on closed
models). Furthermore, the Craya-Herring helical basis
hs [26, 27] has been used in deriving Eq. (6) with the
canonical basis corresponding to a given wavevector k̂,
 ̂ := k̂ ⇥ ẑ and k̂ ⇥  ̂. The amplitude as of u is asso-
ciated with the helical wave with a dispersion relation

for the wave frequency: !s(k) = 2⌦s
kk
k . Each wave vec-

tor is associated with two waves of opposite polarization,
s = ±1. Clearly, !s(k) = 0 implies a flow restricted to
a plane perpendicular to the rotation axis (i.e., kk = 0).
Hence, 2D modes are also known as slow modes. In other
words, 2D modes correspond to vortical motions with no
fast wave modulation.
The mechanism of transfer of energy towards two di-

mensional modes that is responsible for the formation of
Taylor columns is based on near resonant condition of
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Hence, 2D modes are also known as slow modes. In other
words, 2D modes correspond to vortical motions with no
fast wave modulation.
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the interacting triads [24]:
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However, the problem with wave turbulence theory is
that it is not valid for too small values of kk. In fact, the
predicted energy transfer is zero for kk = 0 [28] because
2D and 3D modes are decoupled in such theories at low-
est order. Similar analysis is presented using two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian (EDQNM) closure developed earlier
in the context of rotating flows (see, e.g., [29]). Even
a sophisticated asymptotic quasi-normal Markovian the-
ory, built on the EDQNM closure [30, 31], does not deal
with kk = 0. Thus, while the gradual concentration of
energy in close proximity of the slow manifold can be the-
oretically justified to explain numerical and experimental
observations, the exact coupling between the slow man-
ifold and the 3D modes leading to a transfer of energy
from 3D to 2D modes still remains an unresolved prob-
lem. The inverse cascade of energy, that will be further
elaborated upon in Sec. IV, presumably happens in this
slow manifold.

An alternative theory on the egression of columnar
structures is given by [12]; it is based on the conserva-
tion of linear momentum Pz = 1

2

R
V
R

(x ⇥ !)z dV and

of angular momentum Lz =
R
V
R

(x ⇥ u)zdV in the ax-
ial direction (within a cylinder of radius R), resulting
in a relative concentration of the kinetic energy density
within this cylinder where it disperses to form columnar
clouds. This holds in the linear time scale ⌦�1, when the
non-linear term is small and hence can be neglected in
comparison with the Coriolis term (U

0

⌧ ⌦L
0

). How-
ever, the percentage of total energy contained within the
cylinder falls as (⌦t)�1, so the columns eventually be-
come weak, although the energy density remains higher
within the cylinder than outside. The time scale asso-
ciated with this process, ⌧

⌦

⇠ ⌦�1, will be relevant for
the analysis of the inverse cascade regime in the following
sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, ‘Big whirls
have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.

The notion of inverse cascade of energy to large scales
is well known in 2D turbulence [32] (also see e.g., [17])
and may be justified in simple terms on the basis of
Fjørtoft’s theorem due to the conservation of quadratic
invariants (see, e.g., [25]). In other words, nonlinear tri-
adic interactions conserve both the energy and the en-
strophy, Z :=

⌦
!2

↵
/2, and as the latter is advected to-

wards smaller scales, a fraction of the energy cascades to-
wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization s, will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in all triads, further cor-
roborate the aforementioned argument [35].
In the previous subsection we have summarized theo-

ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
verse cascade to develop as in the case of 2D turbulence.
The strength of the coupling between the 2D and the
3D modes has been studied by [36] and also by [37] us-
ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
tating turbulence [38] and of ideal helical rotating flows
[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].
The decoupling is further illustrated below based on

the presentation in [37] and extended to consider the
flux of energy interchanged between the 2D and the 3D
modes. It is important to note that Refs. [37–39] studied
rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
considers the e↵ect of forcing.
We write wavenumbers in three-dimensional Fourier

space using cylindrical coordinates, k = (k?,kk), with
k? = (kx, ky, 0) = (⇢k,�k), k|| = (0, 0, kz) and k = |k|.
We denote the 2D modes in Fourier space as u

2D(k?),
and the 3D or wave modes as u

3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
Vk := {k s.t. |k| 6= 0 and k|| = 0}.

Then the velocity field u = (u, v, w) can be decomposed
as:

u(k) =

⇢
u

3D(k) if k 2 Wk

u?(k?) + w(k?)ẑ if k 2 Vk
(8)
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• To transfer energy to 2D modes, 
near-resonant and non-resonant 
interactions are needed. 

• Smith & Lee (2005): Truncated 
simulations with only some 
interactions preserved. Near-
resonant interactions are needed 
to reproduce the quasi-two 
dimensionalisation of the flow 

• Alexakis (2015): Analysis of a 
large numerical dataset. The 
dynamics of the 2D modes can 
only be captured if near-resonant 
and non-resonant interactions are 
taken into account.
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• From the momentum equation, we can derive an equation for the 
evolution of the correlation functions: 

• The term on the r.h.s. is a triple correlation associated with triadic 
interactions. 

• For pure wave modes, the Fourier transform of the triple correlation is 
perfectly tuned in the wave frequency (i.e., in the resonance):
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with other eddies. As we are interested in understanding the role of the waves in the
energy transfer, we need an expression for the contribution of each triad to the decorre-
lation of individual modes (and thus, to the distribution of energy per wavenumber). To
do this we define uk = uk(t) and u

0
k = uk(t0) with t

0 = t� ⌧ , and multiply Eq. (2.3) by
u

0⇤
k. After averaging over the time t

0 and assuming the system is in a turbulent steady
state, we obtain
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where it is assumed that the complex conjugate is added, and where we have dropped all
linear terms (i.e., the pressure, Coriolis, and viscous terms) as they do not contribute to
the energy transfer. In the following equations it should also be assumed that complex
conjugates are added to all terms. We can rewrite this equation in terms of functions
that depend only on the time lag ⌧ as
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where
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is the time correlation function for the mode k, and the third-order time correlation is

⇥(k,p,q, ⌧) = hu⇤
k(t

0) · [up(t
0 + ⌧) · q]uq(t

0 + ⌧)i
t

0
. (3.4)

In a turbulent flow, the correlation function �k is expected to decrease to 1/e of its value
at ⌧ = 0 on a timescale that may be either ⌧

S

, ⌧
NL

, or ⌧
!

. This decorrelation results from
the interaction with all triads, with the contribution from each triad measured by the
triple correlation ⇥(k,q,p, ⌧). Thus, computation of this function should allow identifi-
cation of the dominant interactions responsible for the energy cascade discriminated by
time scale. Note also that for ⌧ = 0, ⇥ reduces to the usual transfer function T (k,p,q)
that measures the strength of each individual triad (Kraichnan 1958; Domaradzki &
Rogallo 1990; Wale↵e 1992; Mininni 2011).

As the Fourier transform of the correlation function is the power spectrum, we have

c�k(⌧) = E(k,!), (3.5)

and as from the property of derivatives of Fourier transformed functions
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we thus arrive to

!E(k,!) =
X
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b⇥(k,q,p,!). (3.7)

Note that b⇥ quantifies how much each triad (k,p,q) and each frequency ! contribute
to the space and time (four-dimensional) energy spectrum. Also, how well tuned b⇥ is
around a given !(k) can be used to identify how close to resonance a triad actually is.
We will thus call b⇥ the contribution function.

We can gain further insight into the meaning of b⇥ by studying the case of a fluid in
which only waves are present. In this particular case, we can write uk = Uke

i!kt, and
we can neglect any slow dependence of Uk in time. Bearing aside normalisation factors
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with other eddies. As we are interested in understanding the role of the waves in the
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where it is assumed that the complex conjugate is added, and where we have dropped all
linear terms (i.e., the pressure, Coriolis, and viscous terms) as they do not contribute to
the energy transfer. In the following equations it should also be assumed that complex
conjugates are added to all terms. We can rewrite this equation in terms of functions
that depend only on the time lag ⌧ as

@

@⌧

�k(⌧) = �i

X

p+q=k

⇥(k,q,p, ⌧) (3.2)

where

�k(⌧) = hu⇤
k(t

0) · uk(t
0 + ⌧)i

t

0 (3.3)

is the time correlation function for the mode k, and the third-order time correlation is

⇥(k,p,q, ⌧) = hu⇤
k(t

0) · [up(t
0 + ⌧) · q]uq(t

0 + ⌧)i
t

0
. (3.4)
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. This decorrelation results from
the interaction with all triads, with the contribution from each triad measured by the
triple correlation ⇥(k,q,p, ⌧). Thus, computation of this function should allow identifi-
cation of the dominant interactions responsible for the energy cascade discriminated by
time scale. Note also that for ⌧ = 0, ⇥ reduces to the usual transfer function T (k,p,q)
that measures the strength of each individual triad (Kraichnan 1958; Domaradzki &
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for simplicity, we have
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k · (Up · q)Uq e

�i(!k�!p�!q)t
0
E
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0
d⌧

= U

⇤
k · (Up · q)Uq �(! � !k). (3.8)

So in this case b⇥ only contributes to the frequency ! = !(k), and thus only resonant
triads contribute to E(k,!). In practice b⇥ will not always be sharply peaked around
!(k), as shown below. The width of the peak can therefore be used to quantify how
resonant a triad is.

It is much easier, both conceptually and practically, to work with a symmetrised b⇥,
namely

b⇥S(k,q,!) =
1

2

h
b⇥(k,q,p = k� q,!) + b⇥(k,p = k� q,q,!)

i
. (3.9)

From here on after every mention of ⇥ and its Fourier transform will be in this sym-
metrised form. The superscript S shall therefore be dropped.

4. Numerical results

4.1. Numerical simulations

The code GHOST (Gómez et al. 2005; Mininni et al. 2011) is used to solve equations
(2.1) and (2.2) using a parallel pseudo-spectral method with a second order Runge-
Kutta scheme for the time evolution. The 2/3-rule is used for dealiasing. As will be seen
below, computation of the contribution function requires high cadence I/O in time, and
a significant amount of storage (note spatial information needs to be saved with twice
the frequency of the fastest waves in the system). As a result, only simulations with
moderate resolution can be performed. Here we present two simulations using grids of
N

3 = 5123 points in a three-dimensional periodic box.
Both simulations are identical except for the value of ⌦. In one of the simulations

⌦ = 4, while in the other ⌦ = 8. The simulations were started from the fluid at rest,
and energy was injected via a mechanical forcing. We chose a Taylor-Green forcing of
the form

F = F0 [sin(kTG,x

x) cos(kTG,y

y) cos(kTG,x

z)x̂

� cos(kTG,x

x) sin(kTG,y

y) cos(kTG,z

z)ŷ] , (4.1)

with F0 = 0.277, kTG = (1, 1, 1) (which results in L = 2⇡/kTG = 2⇡/
p
3), and ⌫ =

6.5⇥ 10�4 in dimensionless units (for unit velocity and a box of length 2⇡). The system
was let to reach a turbulent steady state with U ⇡ 0.9, which translates to a Reynolds
number of approximately 5000, and a Rossby number of 0.03 for ⌦ = 4 and of 0.015 for
⌦ = 8. Once in the turbulent steady state the simulations were allowed to run for over 12
large scale turn over times, the time span over which the following analysis was carried
on.

4.2. Energy spectrum and decorrelation times

Before proceeding to the analysis of the contribution function, we first discuss some
general properties of the simulations. In Fig. 1 we show contour levels of the axisymmetric
energy spectrum for the simulation with ⌦ = 8, as a function of the perpendicular
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Figure 9. Inverse relative bandwidth (quality factor) of the peak in each contribution function,
as a function of q, and for fixed k = (0, 0, 8), a) for the simulation with Ro ⇡ 0.03, and b) for
the simulation with Ro ⇡ 0.015. Larger quality factors correspond to sharper bandwidths of
the triads relative to their central frequency, and thus to more resonant interactions (i.e., the
factor quantifies how well tuned a triad is). Circles indicate modes which satisfy the theoretical
near-resonance condition with �r < 0.1. A good agreement is observed between the theoretical
condition and the quality factor of the contribution function, specially for the flow with smaller
Rossby number. Note however that relatively large quality factors are observed for branches
which are wider than the condition �r < 0.1, indicating again the important role played by
near-resonant interactions.

of k, and with modes with large q

z

(of the order of |k|, compatible with local triadic
interactions, although these interactions are non-resonant).

4.7. E↵ect of the Rossby number

We can also compare the results in the two simulations with di↵erent Rossby number,
to quantify the e↵ect of changing the rotation frequency in the intensity of resonant and
near-resonant triads. As an illustration, Fig. 8 shows the geometric distribution of the
peak values of the normalised contribution function for the mode k = (0, 0, 8) in the
simulation with larger Rossby number. The same result as in Fig. 5 is obtained, but the
contrast between modes above and below the ⌧

!

= ⌧

NL

curve is less marked. Also, the
region of modes dominated by eddies (i.e., of slow modes) increases as expected, and
the boundary between the two regions indicated by the change in intensity of the triads
moves accordingly. This confirms that the changes in intensity in Fig. 5 indeed separate
triads involving slow and fast modes, and is also consistent with the behaviour expected
in a rotating flow as the Rossby number is varied.

4.8. Direct measurement of the resonance level of each triad

One of the most important implications of the contribution function is that it allows a
direct measurement of how well tuned a triad is, i.e., of how resonant the interaction
between three modes is. This was already discussed in the context of Fig. 3, where we
showed that some triads display a narrower peak around the wave frequency than others.
But now we can put this observation on firmer grounds.

As it follows from Eq. (3.8), for a perfectly resonant triad the contribution function
should be a delta distribution centred around !0 = !(k). Near-resonant and non-resonant
interactions broaden the peak. This broadening can be measured using the quality factor

Q =
!0

�!

. (4.2)
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Figure 3. |b⇥(k = (0, 0, 8),q,!)| as a function of !, for a fixed fast mode k, and for di↵erent
values of q. Interactions with other wave modes (blue and red curves) show a well tuned spectrum
centred around the wave frequency of the mode k, indicating interactions are close to resonance.
On the other hand, interactions with eddy modes (green and cyan curves) display a wider
spectrum. All subsequent analyses of the contribution function focus on its maximum amplitude
and on how well tuned each triad is (i.e., on the width of the peak around the maximum).

for this computation, we only consider modes in the (k
x

= 0, k
y

, k

z

) plane, and therefore
we only sum over the triads with p · x̂ = q · x̂ = 0, resulting in the partial reconstruction
mentioned above. Nonetheless, this su�ces to get the expected behaviour for the time
derivative of the decorrelation functions. For the mode k = (0, 0, 8), which is a fast mode,
the time derivative gets locked to the wave period, while for k = (0, 30, 0), which is a slow
mode, the dominant time scale is the sweeping time. Here and in the following, except
when duly noted, all results shown are for the ⌦ = 8 simulation.

4.4. Contribution functions

We now present our analysis of the behaviour of the contribution function ⇥. Figure
3 shows the value of |b⇥(k = (0, 0, 8),q,!)| as a function of !, for four di↵erent values
of q (i.e., for four di↵erent triads). All of them peak at !0 = !(k), which is the wave
frequency of the mode k. This was checked for other values of k as well, and the peak
in the corresponding wave frequency was observed in all cases except for the modes with
kk ⇡ 0 (i.e., the slow modes), for which no discernible peak is present. Moreover, and
in spite of the presence of the peak for modes with kk > 0, it is worth noting that the
width of the peak depends strongly on the nature of the other modes in the triad. While
interactions with other wave modes have most of the power in the peak and are well
tuned (i.e., the peak is relatively narrow), interactions with slow modes can have large
amplitudes but with a broad spectrum.

This gives a direct way to identify not only the strength of a give triad, but also to
measure how resonant the triad is, as more resonant triads are expected to result in a
sharper spectrum of b⇥(k,q,!) per virtue of Eq. (3.8). Therefore, to simplify the analysis,
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with other eddies. As we are interested in understanding the role of the waves in the
energy transfer, we need an expression for the contribution of each triad to the decorre-
lation of individual modes (and thus, to the distribution of energy per wavenumber). To
do this we define uk = uk(t) and u

0
k = uk(t0) with t

0 = t� ⌧ , and multiply Eq. (2.3) by
u

0⇤
k. After averaging over the time t

0 and assuming the system is in a turbulent steady
state, we obtain

@

@t

⌦
u

0⇤
k · uk

↵
t

0 = �i

X

p+q=k

⌦
u

0⇤
k · (up · q)uq

↵
t

0 , (3.1)

where it is assumed that the complex conjugate is added, and where we have dropped all
linear terms (i.e., the pressure, Coriolis, and viscous terms) as they do not contribute to
the energy transfer. In the following equations it should also be assumed that complex
conjugates are added to all terms. We can rewrite this equation in terms of functions
that depend only on the time lag ⌧ as

@

@⌧

�k(⌧) = �i

X

p+q=k

⇥(k,q,p, ⌧) (3.2)

where

�k(⌧) = hu⇤
k(t

0) · uk(t
0 + ⌧)i

t

0 (3.3)

is the time correlation function for the mode k, and the third-order time correlation is

⇥(k,p,q, ⌧) = hu⇤
k(t

0) · [up(t
0 + ⌧) · q]uq(t

0 + ⌧)i
t

0
. (3.4)

In a turbulent flow, the correlation function �k is expected to decrease to 1/e of its value
at ⌧ = 0 on a timescale that may be either ⌧

S

, ⌧
NL

, or ⌧
!

. This decorrelation results from
the interaction with all triads, with the contribution from each triad measured by the
triple correlation ⇥(k,q,p, ⌧). Thus, computation of this function should allow identifi-
cation of the dominant interactions responsible for the energy cascade discriminated by
time scale. Note also that for ⌧ = 0, ⇥ reduces to the usual transfer function T (k,p,q)
that measures the strength of each individual triad (Kraichnan 1958; Domaradzki &
Rogallo 1990; Wale↵e 1992; Mininni 2011).

As the Fourier transform of the correlation function is the power spectrum, we have

c�k(⌧) = E(k,!), (3.5)

and as from the property of derivatives of Fourier transformed functions

@

@⌧

c�k(⌧) = �i!E(k,!), (3.6)

we thus arrive to

!E(k,!) =
X

p+q=k

b⇥(k,q,p,!). (3.7)

Note that b⇥ quantifies how much each triad (k,p,q) and each frequency ! contribute
to the space and time (four-dimensional) energy spectrum. Also, how well tuned b⇥ is
around a given !(k) can be used to identify how close to resonance a triad actually is.
We will thus call b⇥ the contribution function.

We can gain further insight into the meaning of b⇥ by studying the case of a fluid in
which only waves are present. In this particular case, we can write uk = Uke

i!kt, and
we can neglect any slow dependence of Uk in time. Bearing aside normalisation factors
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Figure 4. Intensity (as a function of q) of the maximum of the contribution function,

max!{|b⇥(k,q,!)|}. In each panel, k is fixed, and the maximum of |b⇥| is plotted for all avail-
able triads by varying q. Two k modes are considered, a) k = (0, 0, 8) and b) (0, 5, 5), both
dominated by waves. The black dots in the centre indicate the modes q = ±k. Two prominent
features arise. One is the e↵ect of the anisotropy of the flow, as triads with larger amplitudes
are distributed along horizontal bands (i.e., coupling the k modes with modes with smaller ver-
tical wave numbers). The other is the defect along the line q = ↵k, as collinear modes do not
contribute to the triads in an incompressible fluid.
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Figure 5. Intensity of the peak values of the normalised contribution function for each triad,

given by max!{|b⇥(k,q,!)|}/E(qy, qz). In each panel, k is fixed for two modes dominated by
waves: a) k = (0, 0, 8), and b) k = (0, 5, 5). The dashed lines represent the modes with ⌧! = ⌧NL.
Modes with ⌧! < ⌧NL (those above the upper dashed line) have higher frequencies (i.e., shorter
time scales), and are thus preferred. Note however there is a non-negligible leakage towards slow
modes q with ⌧! & ⌧NL (i.e., modes slightly below the dashed upper curve).
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Figure 6. Close up of the geometric distribution of the peak value of the normalised contribution

function for each triad, given by max!{|b⇥(k,q,!)|}/E(qy, qz). As in Fig. 5, in each panel k is
fixed to consider two modes dominated by waves: a) k = (0, 0, 8), and b) k = (0, 5, 5). The dashed
curves represent the modes with ⌧! = ⌧NL, and the circles represent the near-resonant modes
(according to the theoretical prediction) with �r < 0.1. In good agreement with wave turbulence
theories, normalised resonant triads have large amplitudes, but some near-resonant triads are
also strong. In panel b), some of these near-resonant triads have non-negligible coupling with
slow modes (see the circles near qy ⇡ 10 and qz ⇡ 0) allowing for energy transfer towards these
modes.

we can focus on a few modes k, explore all available values of q on a triad with k, and
look only at the the maximum value of b⇥ (for all !) and on the relative width of the
maximum (i.e., on how well tuned the interaction is around !0).

In Fig. 4 we show max
!

{|b⇥(k,q,!)|} for two modes k = (0, 0, 8) and (0, 5, 5), as
a function of all possible values of q in the (0, q

y

, q

z

) plane. The anisotropic nature of
rotating turbulence makes a stellar apparition here, as the distribution of values is clearly
influenced by it. The result indicates that triads which are elongated along the horizontal
direction have larger amplitudes, which is compatible with the prediction that energy
tends to go towards the slow modes (with q

z

⇡ 0) as discussed in Wale↵e (1992). Indeed,
the triads with larger amplitudes are located in a horizontal band within �k

z

. q

z

. k

z

.
There are also strong triads that couple the k mode with modes with larger vertical
wavenumber (i.e., triads in the horizontal bands k

z

. |q
z

| . 2k
z

) which are compatible
with an anisotropic transfer of a fraction of the energy towards larger wave numbers (i.e.,
smaller scales). Finally, collinear modes (i.e., modes with q = ↵k) make no contribution
to the triads as a result of the incompressibility of the fluid.

4.5. Normalised contribution functions

Having said this, it can be argued that the strongest triads correspond to modes with
q

z

⇡ 0 only as a result of the anisotropic energy spectrum shown in Fig. 1: the modes
with small vertical wavenumber have most of the energy, and as a result triads involving
those modes will have larger amplitudes. We can thus normalise the triads by the energy
of the q mode in the triad, i.e., we can compute max

!

{|⇥̂(k,q,!)|}/E(q). If this is done,
from Eqs. (3.2) and (3.7) the normalised contribution function has units of inverse time
(i.e., of frequency). This time can thus be interpreted as the time scale of the energy
transfer mechanism, as it is often done in turbulence theories.
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with other eddies. As we are interested in understanding the role of the waves in the
energy transfer, we need an expression for the contribution of each triad to the decorre-
lation of individual modes (and thus, to the distribution of energy per wavenumber). To
do this we define uk = uk(t) and u

0
k = uk(t0) with t

0 = t� ⌧ , and multiply Eq. (2.3) by
u

0⇤
k. After averaging over the time t

0 and assuming the system is in a turbulent steady
state, we obtain

@

@t

⌦
u

0⇤
k · uk

↵
t

0 = �i

X

p+q=k

⌦
u

0⇤
k · (up · q)uq

↵
t

0 , (3.1)

where it is assumed that the complex conjugate is added, and where we have dropped all
linear terms (i.e., the pressure, Coriolis, and viscous terms) as they do not contribute to
the energy transfer. In the following equations it should also be assumed that complex
conjugates are added to all terms. We can rewrite this equation in terms of functions
that depend only on the time lag ⌧ as

@

@⌧

�k(⌧) = �i

X

p+q=k

⇥(k,q,p, ⌧) (3.2)

where

�k(⌧) = hu⇤
k(t

0) · uk(t
0 + ⌧)i

t

0 (3.3)

is the time correlation function for the mode k, and the third-order time correlation is

⇥(k,p,q, ⌧) = hu⇤
k(t

0) · [up(t
0 + ⌧) · q]uq(t

0 + ⌧)i
t

0
. (3.4)

In a turbulent flow, the correlation function �k is expected to decrease to 1/e of its value
at ⌧ = 0 on a timescale that may be either ⌧

S

, ⌧
NL

, or ⌧
!

. This decorrelation results from
the interaction with all triads, with the contribution from each triad measured by the
triple correlation ⇥(k,q,p, ⌧). Thus, computation of this function should allow identifi-
cation of the dominant interactions responsible for the energy cascade discriminated by
time scale. Note also that for ⌧ = 0, ⇥ reduces to the usual transfer function T (k,p,q)
that measures the strength of each individual triad (Kraichnan 1958; Domaradzki &
Rogallo 1990; Wale↵e 1992; Mininni 2011).

As the Fourier transform of the correlation function is the power spectrum, we have

c�k(⌧) = E(k,!), (3.5)

and as from the property of derivatives of Fourier transformed functions

@

@⌧

c�k(⌧) = �i!E(k,!), (3.6)

we thus arrive to

!E(k,!) =
X

p+q=k

b⇥(k,q,p,!). (3.7)

Note that b⇥ quantifies how much each triad (k,p,q) and each frequency ! contribute
to the space and time (four-dimensional) energy spectrum. Also, how well tuned b⇥ is
around a given !(k) can be used to identify how close to resonance a triad actually is.
We will thus call b⇥ the contribution function.

We can gain further insight into the meaning of b⇥ by studying the case of a fluid in
which only waves are present. In this particular case, we can write uk = Uke

i!kt, and
we can neglect any slow dependence of Uk in time. Bearing aside normalisation factors
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INVERSE CASCADE

• Once the energy reaches the 2D modes, it can develop an inverse 
transfer towards large scales. 

• Returning to the 2D+3D decomposition: 

• We can write equations for the energy in these modes: 

• If the coupling between 2D and 3D modes goes to zero for zero Ro: 

(see however Alexakis 2015, Gallet 2015).

3

the interacting triads [24]:

sk

k||

k
+ sp

p||

p
+ sq

q||

q
= O(Ro) with k + p + q = 0. (7)

However, the problem with wave turbulence theory is
that it is not valid for too small values of kk. In fact, the
predicted energy transfer is zero for kk = 0 [28] because
2D and 3D modes are decoupled in such theories. Similar
analysis is presented using two-point closures of turbu-
lence, such as the Eddy Damped Quasi-Normal Marko-
vian (EDQNM) closure developed earlier in the context
of rotating flows (see, e.g., [29]). Even a sophisticated
asymptotic quasi-normal Markovian theory, built on the
EDQNM closure [30, 31], does not deal with kk = 0.
Thus, while the gradual concentration of energy in close
proximity of the slow manifold can be theoretically justi-
fied to explain numerical and experimental observations,
the exact coupling between the slow manifold and the
3D modes leading to a transfer of energy from 3D to 2D
modes still remains an unresolved problem. The inverse
cascade of energy, that will be further elaborated upon
in Sec. IV, presumably happens in this slow manifold.

An alternative theory on the egression of columnar
structures is given by [12]; it is based on the conserva-
tion of linear momentum Pz = 1

2

R
V

R

(x ⇥ !)z dV and
of angular momentum Lz =

R
V

R

(x ⇥ u)zdV in the ax-
ial direction (within a cylinder of radius R), resulting
in a relative concentration of the kinetic energy density
within this cylinder where it disperses to form columnar
clouds. This holds in the linear time scale ⌦�1, when the
non-linear term is small and hence can be neglected in
comparison with the Coriolis term (U

0

⌧ ⌦L
0

). How-
ever, the percentage of total energy contained within the
cylinder falls as (⌦t)�1, so the columns eventually be-
come weak, although the energy density remains higher
within the cylinder than outside. The time scale asso-
ciated with this process, ⌧

⌦

⇠ ⌦�1, will be relevant for
the analysis of the inverse cascade regime in the following
sections.

C. Coupling between modes and energy transfer

Lewis Fry Richardson’s famous couplet, ‘Big whirls
have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.

The notion of inverse cascade of energy to large scales
is well known in 2D turbulence [32] (also see e.g., [17])
and may be justified in simple terms on the basis of
Fjørtoft’s theorem due to the conservation of quadratic
invariants (see, e.g., [25]). In other words, nonlinear tri-
adic interactions conserve both the energy and the en-
strophy, Z :=

⌦
!2

↵
/2, and as the latter is advected to-

wards smaller scales, a fraction of the energy cascades to-
wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization, s will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in a triad, further corrob-
orate the aforementioned argument [35].

In the previous subsection we have summarized theo-
ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
verse cascade to develop as in the case of 2D turbulence.
The strength of the coupling between the 2D and the
3D modes has been studied by [36] and also by [37] us-
ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
tating turbulence [38] and of ideal helical rotating flows
[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].

The decoupling is further illustrated below based on
the presentation in [37] and extended to consider the
flux of energy interchanged between the 2D and the 3D
modes. It is important to note that Refs. [37–39] studied
rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
considers the e↵ect of forcing.

We write wavenumbers in three-dimensional Fourier
space using cylindrical coordinates, k = (k?,kk), with
k? = (kx, ky, 0) = (⇢k,�k), k|| = (0, 0, kz) and k = |k|.
We denote the 2D modes in Fourier space as u

2D(k?),
and the 3D or wave modes as u

3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
Vk := {k s.t. |k| 6= 0 and k|| = 0}.

Then the velocity field u = (u, v, w) can be decomposed
as:

u(k) =
⇢

u

3D(k) if k 2Wk

u?(k?) + w(k?)ẑ if k 2 Vk
(8)
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Thus, while the gradual concentration of energy in close
proximity of the slow manifold can be theoretically justi-
fied to explain numerical and experimental observations,
the exact coupling between the slow manifold and the
3D modes leading to a transfer of energy from 3D to 2D
modes still remains an unresolved problem. The inverse
cascade of energy, that will be further elaborated upon
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the analysis of the inverse cascade regime in the following
sections.
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have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity ’ is the an-
tithesis of observations made by experimentalists [5] and
analysts [15, 16] in the context of rotating turbulence.
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and may be justified in simple terms on the basis of
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wards larger scales to maintain the balance in each triad.

As discussed in the introduction, the justification for an
inverse cascade of energy in three-dimensional rotating
turbulence is not so straightforward since the conserva-
tion laws change in three dimensions. Nevertheless, a
similar argument could be made in the case of three di-
mensional flows based on helicity and the possibility of
an inverse cascade of energy may be alluded to, as has
been explained in [24, 33]. In fact, it has been argued
in [24] that interactions between three helical modes of
the same polarization, s will lead to an inverse energy
cascade for the same reason as has been postulated by
Kraichnan [34] and Fjørtoft in the two dimensional case.
Numerical simulations of three dimensional flows, where
the non-linear interactions have been restricted to iden-
tically polarized wave numbers in a triad, further corrob-
orate the aforementioned argument [35].
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ries that clearly vindicate the notion of a gradual transfer
of energy towards the slow manifold, without being able
to formally account for the exact coupling between the
3D and the 2D modes. However, once the energy is in
the 2D modes and if the coupling between the 2D and
the 3D modes is weak, one can naively expect an in-
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The strength of the coupling between the 2D and the
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ing numerical simulations. In the case of infinitely small
Ro and in a periodic box, the 2D modes are expected
to decouple from the 3D modes and evolve under their
own dynamics. This is in agreement with the evidence of
decoupling between the 2D and the 3D modes that was
observed in numerical simulations of freely decaying ro-
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[39]. However, note that some authors claim that these
modes never decouple in infinite domains [40].

The decoupling is further illustrated below based on
the presentation in [37] and extended to consider the
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rotating flows in the absence of forcing, thereby making
a case for analyzing a completely decoupled set of equa-
tions for the 2D and the 3D modes; however, Ref. [41]
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3D(k). Following [37],
wave vectors are decomposed as follows:

Wk := {k s.t. |k| 6= 0 and k|| 6= 0},
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where u

2D(k?) = u?(k?) + w(k?)ẑ. Likewise, the to-
tal energy E =

P
k |u(k)|2/2 may be written in terms of

the modal components as E = E
3D + E

2D = E
3D +

(E? + Ew), where E
3D =

P
k2W

k

|u(k)|2/2, E? =P
k?

|u
2D(k?)|2/2 and Ew =

P
k?

|w(k?)|2/2.
Multiplying the spectral form of Eq. (1) by u

?(k) and
integrating over all wavenumbers in Wk and Vk respec-
tively, results in two di↵erential equations for the total
energy in the wave and the slow modes as follows:

dtE3D = ⇧
2D!3D �⇧

3D + ✏
3D, (9)

dtE2D = �⇧
2D!3D �⇧

2D + ✏
2D, (10)

where the ✏
3D and ✏

2D terms refer to the corresponding
components of the forced energy injection, and 3D (2D)
refers to k|| 6= 0 (k|| = 0), as stated before. Equations (9)
and (10) are congruous to the equations derived in [37].
When positive, the term ⇧

3D refers to the 3D energy
that is transferred to small scales and dissipated per unit
of time (thus balancing the ✏

3D term) and results from
triadic interactions that move energy from the 3D modes
to the 3D modes (resonant interactions involving three
fast modes or those between two fast modes and one slow
mode). Similarly, the term ⇧

2D results from all triadic
interactions that move energy from the 2D modes to the
2D modes and, when positive, it’s net e↵ect is to balance
the injection of energy per unit time in the 2D modes.
Finally, ⇧

2D!3D is the flux of energy across k|| = 0 in
Fourier space, i.e., energy going from the 2D to the 3D
modes when ⇧

2D!3D(t) > 0. This term is expected to
be O(Ro) [37], and as a result, in the limit of zero Ro,
the slow manifold decouples from the wave modes and
the energy equations (9) and (10) are as follows:

dtE3D = �⇧
3D + ✏

3D,

dtE2D = �⇧
2D + ✏

2D.

It may be emphasized that, in this limit, ⇧
2D only in-

volves triadic interactions between slow modes and ⇧
3D

involves interactions between fast modes. Moreover, the
equation for the evolution of the 2D energy further de-
couples into equations for E? and Ew (see, e.g., [37]).

III. NUMERICAL SIMULATIONS AND
SUBGRID SCALE MODEL

A. Large eddy simulations

We integrate the Navier-Stokes Eq. (1) in a rotating
frame of reference using a parallel pseudo-spectral code
with periodic boundary conditions [42]. A second order
Runge-Kutta method is used to evolve the equations in
time and no dealiasing is done because a LES is used; so
the maximum resolved wavenumber is kc = N/2, where
N is the linear resolution. As large scale separation be-
tween the box size and the forcing scale is essential to
study inverse cascades with reasonably large values of the

Reynolds number, we use large eddy simulations (LES).
The sub-grid scale model is such that the wavenumbers
below a cut-o↵ wavenumber, kc, are resolved explicitly
whereas larger wavenumbers are modeled based on en-
ergy and helicity contributions to the eddy viscosity and
the eddy noise terms in the EDQNM equations. For com-
pleteness, the model is summarized below.
First, the larger resolved scales are computed by inte-

grating the following equation:


@

@t
+ k2

✓
1

Re
+ ⌫k|k

c

◆�
u↵(k, t) = T<

↵ (k, t)

� 1

Ro
P↵� "��⇣u⇣(k, t) + f↵(k, t), (11)

which is basically the Fourier transform of Eq. (1) (bar-
ring the newly introduced subgrid model term, ⌫k|k

c

).
Here the greek subindices denote cartesian components
of the vectors and tensors and Einstein summation con-
vention is assumed. The term T<

↵ (k, t) is the Fourier
transform of the nonlinear term in Eq. (1) over all modes
with k < kc. In other words, it represents the nonlin-
ear transfer that arises from the convolution sum over
a truncated triadic domain, k + p + q = 0, k, p, q < kc.
This term is computed using the pseudo-spectral method.
The eddy viscosity term, ⌫k|k

c

is associated with the sub-
grid model and is computed based on parameters that are
modeled from the unresolved scales. P↵�(k) = �↵�� k

↵

k
�

k2

is the projector operator on the solenoidal velocity field
and " is the antisymmetric tensor associated with the
curl operator (Levi-Civita symbol).
The isotropic energy spectrum E(k, t) and the helic-

ity spectrum H(k, t) up to wavenumber 3kc (including
unresolved scales) are then obtained through data fit-
ting and extrapolation from the resolved scales. Next,
the isotropic energy spectrum E(k, t) for the unresolved
scales is evolved based on the following:

(@t + 2⌫k2)E(k, t) = �2⌫k|k
c

k2E(k, t)� 2⌫̃k|k
c

k2H(k, t)

+ T<
E (k, t) +

T̂ pq
E (k, t)

4⇡k2
. (12)

An equivalent balance equation for the unresolved he-
licity spectrum H(k, t) is solved if the helicity of the
flow is non-zero (note: when H ⌘ 0 , we have ⌫̃ ⌘ 0).
Here, ⌫k|k

c

and ⌫̃k|k
c

are terms prescribed by the model
as before, T<

E (k, t) represents the energy transferred to

unresolved scales from the resolved scales and T̂ pq
E repre-

sents the energy and helicity interactions at wavenumbers
p, q > kc. The analytical forms of the above terms come
from a two-point analysis of an integro-di↵erential equa-
tions originating from the EDQNM closure for isotropic
Navier-Stokes turbulence. Thus, our model assumes that
isotropy is recovered at su�ciently small scales (smaller
than the Zeman scale) as was recently shown in a large
DNS of rotating turbulence [43]. It may be noted here
that the LES was able to reproduce the results of this
DNS on a grid of 30723 points in which the Zeman scale

E. HORNE AND P. D. MININNI PHYSICAL REVIEW E 88, 013011 (2013)

velocity and vorticity behave as passive scalars [7,21,22],
the actual degree of decoupling and the scaling of individual
components of the fields are hard to quantify.

In this work, we use the cancellation exponent [23,24] to
study the isotropic and anisotropic scaling of different quan-
tities in rotating turbulence. The exponent gives information
about the rapid changes in the sign of scalar quantities, and has
been used before to characterize fluctuations of velocity and
magnetic-field components in hydrodynamic turbulence and
magnetohydrodynamic dynamos [23], of the current density
in 2D magnetohydrodynamic turbulence [25,26], of magnetic
helicity in solar wind observations [27], and of helicity in
isotropic and homogeneous hydrodynamic turbulence [28]. We
analyze data from high-resolution direct numerical simulations
(up to 15363 grid points) and compute the cancellation
exponent for the Cartesian components of the velocity and
vorticity fields and for the helicity. Considering the symmetries
of rotating flows and the strong anisotropy that develops,
we also compute the cancellation exponent for the vertically
averaged velocity, vorticity, and helicity. We find that for strong
rotation, only the vertical component of the velocity and the
vorticity show clear power-law scaling, an indication of sign
singularity for an infinite Reynolds number. Moreover, the
vertical velocity and vorticity in many of the simulations show
the same scaling, in agreement with theories that predict that
for strong rotation, both quantities follow the same dynamics.
The horizontal components of the fields are smoother and do
not show strong sign fluctuations at small scales.

II. ROTATING FLOWS AND NUMERICAL SIMULATIONS

Before introducing the cancellation exponent, we briefly
present in this section some results for rotating turbulence that
motivate decisions in the way the numerical data are analyzed,
and that are also useful to interpret the results. For details
of rotating turbulence, the reader is referred to [6,17] and
references therein. We also describe in this section the direct
numerical simulations that were used for the analysis.

Incompressible rotating turbulence is described by the
Navier-Stokes equations in a rotating frame, which for the
velocity field u can be written as

∂u
∂t

+ ω × u + 2" × u = −∇P + ν∇2u + F (1)

and

∇ · u = 0, (2)

where ω = ∇ × u is the vorticity, P is the total pressure
modified by the centrifugal term and divided by the fluid
mass density, and ν is the kinematic viscosity. The external
force F drives the turbulence, and in the following the rotation
axis is chosen in the z direction, " = #ẑ, with # the rotation
frequency.

In the linearized case, these equations accept helical waves
as solutions, which correspond to inertial waves (see, e.g., [4])
and have dispersion relation ω = ±2" · k/k. In the nonlinear
case and in wave turbulence theory, modes in Fourier space
can thus be separated between 2D modes (with zero frequency,
and therefore often called “slow” modes) and 3D modes (often
called “fast” modes). The velocity associated with the slow

modes can be obtained from a vertical average (see, e.g., [7]),

u(x,y) = 1
L

∫ L

0
u(x,y,z)dz, (3)

with L the vertical size of the box. A vertically averaged
vorticity, which will be of interest for reasons explained below,
can be computed in the same way,

ω(x,y) = 1
L

∫ L

0
ω(x,y,z)dz. (4)

We can further decompose these vertically averaged fields
into a vector field in the (x,y) plane (i.e., perpendicular to the
rotation axis) and a vertical component parallel to the rotation
axis. For the velocity field, this results in

u(x,y) = u⊥(x,y) + uz(x,y)ẑ. (5)

The remainder of the velocity field (with spatial dependence
in the vertical direction) is fully 3D and thus corresponds to
“fast” modes. The same decomposition can be used for the
vertically averaged vorticity,

ω(x,y) = ω⊥(x,y) + ωz(x,y)ẑ. (6)

In rotating turbulent flows, slow and fast modes interact
through resonant and nonresonant triadic interactions. In wave
turbulence theory, only resonant interactions are considered to
the lowest order in an expansion in terms of the Rossby number
(assumed small). This results in a decoupling of the 2D modes
in the limit of rapid rotation [4,18] (see, however, [6] for the
case of infinite domains). As a result, u⊥ is expected to satisfy
the 2D Navier-Stokes equation,

∂u⊥

∂t
+ u⊥ · ∇u⊥ = −∇P + ν∇2u⊥. (7)

If decoupling of 2D and 3D modes is assumed, it also results
that the equation for the vertically averaged vertical velocity
is

∂uz

∂t
+ u⊥ · ∇uz = ν∇2uz, (8)

which tells us that the vertically averaged vertical velocity is
advected and diffused by u⊥ as a passive scalar.

Taking the curl of Eq. (7), we obtain the equation for the
vertically averaged vertical component of the vorticity,

∂ωz

∂t
+ u⊥ · ∇ωz = ν∇2ωz. (9)

This equation is again the equation of a 2D passive scalar, and
therefore ωz should also be passively advected and diffused by
u⊥. In other words, both uz and ωz follow the same equation
under these approximations.

It should be noted that near-resonant interactions and
higher-order resonances may break the decoupling, and a re-
duced model of rotating turbulence may be more complex than
just 2D Navier-Stokes (as a matter of fact, the behavior of 2D
modes in rotating turbulence is known to display differences
with 2D turbulence; see, e.g., [20,29–31], and asymptotic
expansions also indicate that some coupling persists between
2D and 3D modes [32]). However, it is interesting to know
whether a similar scaling for uz and ωz results due to the fact
that at the level of resonant triads, Eqs. (8) and (9) are the
same.
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FIG. 7: Time evolution of the energy spectrum of 2D modes
e(k?, kk = 0) (top) and of the perpendicular spectrum E(k?)
(bottom) in run ANI3. A �5/3 slope is indicated as a refer-
ence.

more energy in 2D modes than in 3D modes. The other
forcing functions considered in the previous subsection
inject either more energy in 3D modes (RND), or energy
only in a few 3D modes with no 2D injection (TG). Here
we explore if anisotropic injection can be responsible for
the di↵erent scaling laws observed in the e(k?, kk = 0)
spectrum by means of numerical simulations in which we
control the anisotropy of the external forcing (runs ANI
in table I).

It should be pointed out that what we call here
“anisotropic injection” for sake of brevity, is actually a
more subtle e↵ect associated with how much energy is di-
rectly injected in 2D modes compared to that into the 3D
modes. Indeed, TG forcing is directionally anisotropic (in
the sense that only a few modes in a spherical shell are
excited in Fourier space), but it shows similar inverse cas-
cade scaling as the RND runs, which have no directional
anisotropy.

The energy spectra e(k?, kk = 0), E(k?), and E
3D(k?)

at late times for runs ANI1, ANI3, and ANI4 are shown in
Fig. 6. The run ANI1 corresponds to a run with random
forcing with anisotropic exponent � = 1. Runs ANI3 and
ANI4 have � = 3, with zero and close to maximal helicity
injection, respectively (see table I). The spectra of ANI2
behave as ANI1 and are not shown.
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FIG. 8: Helicity spectra H(k?) and h(k?, kk = 0) (i.e., the
spectrum of helicity contained in purely horizontal motions)
for runs ABC (above) and ANI4 (below). Slopes are indicated
as a reference.

The time evolution of e(k?, kk = 0) and E(k?) for run
ANI3, up to 250⌧f turn-over times at intervals of 35.7⌧f
turn-over times, is shown in Fig. 7. A clear build up of

a ⇠ k
�5/3
? spectrum can be observed in the runs with

anisotropic forcing irrespective of the amount of helicity
in the flow.

C. Helicity at large scales

Fig. 8 shows the helicity spectra H(k?) and h(k?, kk =
0) for the runs with helical forcing ABC and ANI4. There
is no significant large scale growth of helicity and the rel-
ative helicity remains negligibly small at low wavenum-
bers, ⇢H(k) = H(k)/kE(k) ! 0 for k ! 0 (also
⇢H(k?) ! 0 for k? ! 0). This is consistent with the
observation above that helicity does not seem to a↵ect
the energy scaling in the inverse cascade range, as has
also been shown in previous studies of helicity cascading
to smaller scales in rotating flows [50].

4

where u

2D(k?) = u?(k?) + w(k?)ẑ. Likewise, the to-
tal energy E =

P
k |u(k)|2/2 may be written in terms of

the modal components as E = E
3D + E

2D = E
3D +

(E? + Ew), where E
3D =

P
k2W

k

|u(k)|2/2, E? =P
k?

|u
2D(k?)|2/2 and Ew =

P
k?

|w(k?)|2/2.
Multiplying the spectral form of Eq. (1) by u

?(k) and
integrating over all wavenumbers in Wk and Vk respec-
tively, results in two di↵erential equations for the total
energy in the wave and the slow modes as follows:

dtE3D = ⇧
2D!3D �⇧

3D + ✏
3D, (9)

dtE2D = �⇧
2D!3D �⇧

2D + ✏
2D, (10)

where the ✏
3D and ✏

2D terms refer to the corresponding
components of the forced energy injection, and 3D (2D)
refers to k|| 6= 0 (k|| = 0), as stated before. Equations (9)
and (10) are congruous to the equations derived in [37].
When positive, the term ⇧

3D refers to the 3D energy
that is transferred to small scales and dissipated per unit
of time (thus balancing the ✏

3D term) and results from
triadic interactions that move energy from the 3D modes
to the 3D modes (resonant interactions involving three
fast modes or those between two fast modes and one slow
mode). Similarly, the term ⇧

2D results from all triadic
interactions that move energy from the 2D modes to the
2D modes and, when positive, it’s net e↵ect is to balance
the injection of energy per unit time in the 2D modes.
Finally, ⇧

2D!3D is the flux of energy across k|| = 0 in
Fourier space, i.e., energy going from the 2D to the 3D
modes when ⇧

2D!3D(t) > 0. This term is expected to
be O(Ro) [37], and as a result, in the limit of zero Ro,
the slow manifold decouples from the wave modes and
the energy equations (9) and (10) are as follows:

dtE3D = �⇧
3D + ✏

3D,

dtE2D = �⇧
2D + ✏

2D.

It may be emphasized that, in this limit, ⇧
2D only in-

volves triadic interactions between slow modes and ⇧
3D

involves interactions between fast modes. Moreover, the
equation for the evolution of the 2D energy further de-
couples into equations for E? and Ew (see, e.g., [37]).

III. NUMERICAL SIMULATIONS AND
SUBGRID SCALE MODEL

A. Large eddy simulations

We integrate the Navier-Stokes Eq. (1) in a rotating
frame of reference using a parallel pseudo-spectral code
with periodic boundary conditions [42]. A second order
Runge-Kutta method is used to evolve the equations in
time and no dealiasing is done because a LES is used; so
the maximum resolved wavenumber is kc = N/2, where
N is the linear resolution. As large scale separation be-
tween the box size and the forcing scale is essential to
study inverse cascades with reasonably large values of the

Reynolds number, we use large eddy simulations (LES).
The sub-grid scale model is such that the wavenumbers
below a cut-o↵ wavenumber, kc, are resolved explicitly
whereas larger wavenumbers are modeled based on en-
ergy and helicity contributions to the eddy viscosity and
the eddy noise terms in the EDQNM equations. For com-
pleteness, the model is summarized below.
First, the larger resolved scales are computed by inte-

grating the following equation:


@

@t
+ k2

✓
1

Re
+ ⌫k|k

c

◆�
u↵(k, t) = T<

↵ (k, t)

� 1

Ro
P↵� "��⇣u⇣(k, t) + f↵(k, t), (11)

which is basically the Fourier transform of Eq. (1) (bar-
ring the newly introduced subgrid model term, ⌫k|k

c

).
Here the greek subindices denote cartesian components
of the vectors and tensors and Einstein summation con-
vention is assumed. The term T<

↵ (k, t) is the Fourier
transform of the nonlinear term in Eq. (1) over all modes
with k < kc. In other words, it represents the nonlin-
ear transfer that arises from the convolution sum over
a truncated triadic domain, k + p + q = 0, k, p, q < kc.
This term is computed using the pseudo-spectral method.
The eddy viscosity term, ⌫k|k

c

is associated with the sub-
grid model and is computed based on parameters that are
modeled from the unresolved scales. P↵�(k) = �↵�� k

↵

k
�

k2

is the projector operator on the solenoidal velocity field
and " is the antisymmetric tensor associated with the
curl operator (Levi-Civita symbol).
The isotropic energy spectrum E(k, t) and the helic-

ity spectrum H(k, t) up to wavenumber 3kc (including
unresolved scales) are then obtained through data fit-
ting and extrapolation from the resolved scales. Next,
the isotropic energy spectrum E(k, t) for the unresolved
scales is evolved based on the following:

(@t + 2⌫k2)E(k, t) = �2⌫k|k
c

k2E(k, t)� 2⌫̃k|k
c

k2H(k, t)

+ T<
E (k, t) +

T̂ pq
E (k, t)

4⇡k2
. (12)

An equivalent balance equation for the unresolved he-
licity spectrum H(k, t) is solved if the helicity of the
flow is non-zero (note: when H ⌘ 0 , we have ⌫̃ ⌘ 0).
Here, ⌫k|k

c

and ⌫̃k|k
c

are terms prescribed by the model
as before, T<

E (k, t) represents the energy transferred to

unresolved scales from the resolved scales and T̂ pq
E repre-

sents the energy and helicity interactions at wavenumbers
p, q > kc. The analytical forms of the above terms come
from a two-point analysis of an integro-di↵erential equa-
tions originating from the EDQNM closure for isotropic
Navier-Stokes turbulence. Thus, our model assumes that
isotropy is recovered at su�ciently small scales (smaller
than the Zeman scale) as was recently shown in a large
DNS of rotating turbulence [43]. It may be noted here
that the LES was able to reproduce the results of this
DNS on a grid of 30723 points in which the Zeman scale
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TABLE II: Amplitude of the terms in Eq. (9). The time derivative dE3D/dt was obtained using centered finite di↵erences from
the data. ⇧(kk = 0) represents energy per unit of time transferred from 2D to 3D modes, and ✏3D is the power injected in
the 3D modes. ⇧l.h.s.

3D is the flux of energy in the 3D modes estimated from Eq. (29), ⇧est.
3D is estimated from Eq. (31), and

2⌫
R

k2Z3D(k) dk is an estimation based on the energy dissipation rate.

Run dE3D/dt ⇧(kk = 0) ✏3D ⇧l.h.s.
3D ⇧est.

3D 2⌫
R

k2E3D(k)dk
TG 1.0⇥ 10�4 �2.0⇥ 10�3 3.0⇥ 10�2 2.8⇥ 10�2 1.0⇥ 10�2 1.0⇥ 10�2

RND1 1.0⇥ 10�4 �6.8⇥ 10�3 4.6⇥ 10�2 3.9⇥ 10�2 2.0⇥ 10�2 2.0⇥ 10�2

RND4 4.0⇥ 10�5 �6.3⇥ 10�3 4.6⇥ 10�2 3.9⇥ 10�2 2.0⇥ 10�2 3.0⇥ 10�2

ANI1 1.0⇥ 10�4 �5.2⇥ 10�3 8.9⇥ 10�3 3.6⇥ 10�3 4.0⇥ 10�2 4.0⇥ 10�2

ANI2 1.0⇥ 10�4 �2.3⇥ 10�3 9.3⇥ 10�3 6.9⇥ 10�3 2.0⇥ 10�2 1.0⇥ 10�2

ANI3 1.0⇥ 10�4 �6.9⇥ 10�4 6.5⇥ 10�3 5.7⇥ 10�3 2.0⇥ 10�3 5.0⇥ 10�3

ANI4 3.0⇥ 10�5 �6.0⇥ 10�4 5.4⇥ 10�3 4.7⇥ 10�3 2.0⇥ 10�3 4.0⇥ 10�3

ABC �2.0⇥ 10�4 8.3⇥ 10�2 2.0⇥ 10�2 1.0⇥ 10�1 3.0⇥ 10�2 3.0⇥ 10�2

TABLE III: Amplitude of the terms in Eq. (10). The time
derivative dE2D/dt was obtained using centered finite di↵er-
ences, ✏2D is the power injected in the 2D modes, and ⇧l.h.s.

2D

is the flux of energy in 2D modes estimated from Eq. (30).

Run dE2D/dt ✏2D ⇧l.h.s.
2D

TG 4.0⇥ 10�4 1.0⇥ 10�10 1.6⇥ 10�3

RND1 1.0⇥ 10�3 1.3⇥ 10�3 7.1⇥ 10�3

RND4 2.0⇥ 10�3 1.5⇥ 10�3 5.8⇥ 10�3

ANI1 1.0⇥ 10�3 1.1⇥ 10�3 5.3⇥ 10�3

ANI2 4.0⇥ 10�4 7.0⇥ 10�4 2.6⇥ 10�3

ANI3 7.0⇥ 10�5 5.0⇥ 10�4 1.1⇥ 10�3

ANI4 8.0⇥ 10�5 6.4⇥ 10�4 1.1⇥ 10�3

ABC 5.0⇥ 10�4 7.0⇥ 10�2 �1.3⇥ 10�2

the evolution of the e(k?, k|| = 0) spectra over time, as
shown in Fig. 2, is evidence of occurrence of the inverse
cascade of energy in the slow manifold. It may also be
worth pointing out that with increasing � (anisotropy),
⇧

2D, for the ANI runs, become less positive and seems
to approach the nature of the energy cascade exhibited
by the ABC run (see table III).

The picture that emerges for the fluxes from the values
in tables II and III is illustrated schematically in Fig. 10.
For isotropic forcing, a fraction of the energy injected into
the 3D modes is transferred to the slow manifold and the
remaining 3D energy is transferred to the 3D modes with
larger wavenumbers.

Recently, [41] did a detailed study of energy transfers
in forced rotating turbulence and concluded that the for-
mer transfer, from the 3D to the 2D modes, is non-local.
The results in [41] (with simulations forced at smaller
wavenumbers than in our case) are consistent with our
results, except that they attribute the development of the
⇠ k�3 spectrum in the 2D modes to a direct cascade of
enstrophy once the 3D modes inject energy directly into
the 2D modes with the smallest wavenumbers. Although,
our analysis cannot disprove this conjecture, the ampli-
tude of the terms in tables II and III and the nature of
the evolution of the 2D energy spectra in Fig. 2 hints at
a likely inverse transfer of energy in the slow manifold.

FIG. 10: A schematic depiction of the direction of transfer of
energy (and corresponding fluxes) in the case of forced rotat-
ing turbulence. Here fm is the normalized unit amplitude of
forcing in Fourier space. The black dots indicate the modes
that are directly excited by the di↵erent forcing functions,
with 2fm indicating twice the energy injected in that mode
compared to the energy injected into other modes. Directions
of the arrows are based on the analysis of data from tables II,
III and Figs. 2, 4.

For anisotropic and ABC forcing the picture changes.
As more energy is injected directly into the 2D modes
by the forcing, the flux of energy from the 2D to the
3D modes, ⇧(kk = 0) in table II, increases (from larger
negative values to smaller negative values) and eventu-
ally reverses sign becoming positive. In the ABC flow
(and perhaps for other flows with very high anisotropic
forcing), the energy injected directly into the 2D modes
undergoes an inverse cascade in the slow manifold, and
later the excess of energy in these modes relative to the
3D modes “leaks” energy into the 3D modes at large
scales (see Fig. 10). As the e↵ect of the 3D modes over
the 2D modes is less relevant in these runs, the runs with
either small or positive ⇧(kk = 0) display ⇠ k

�5/3

? scal-
ing.



INVERSE CASCADE

Sen, Mininni, Rosenberg, & Pouquet, PRE 86, 036319 (2012), also Campagne et al. (2015).

7

100 101 102
10−8

10−6

10−4

10−2

k
⊥

en
er
gy

 

 

E(k
⊥
)

e(k
⊥
,k||=0)

E3D(k⊥)

k
⊥
−3

100 101 102

10−5

10−4

10−3

10−2

10−1

k
⊥

en
er
gy

 

 

E(k
⊥
)

e(k
⊥
,k||=0)

E3D(k⊥)

k
⊥
−1

k
⊥
−5/3

100 101 102
10−8

10−6

10−4

10−2

k
⊥

en
er
gy

 

 

E(k
⊥
)

e(k
⊥
,k||=0)

E3D(k⊥)

k
⊥
−3

100 101 102

10−6

10−4

10−2

k
⊥

en
er
gy

 

 

E(k
⊥
)

e(k
⊥
,k||=0)

E3D(k⊥)

k
⊥
−3

FIG. 1: E(k?), E3D(k?) and e(k?, kk = 0) at late times for
TG, ABC, RND1 and RND4 forcing (from top to bottom).
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FIG. 2: Time evolution of the spectrum of the 2D energy
e(k?, kk = 0) for run TG, ABC, RND1 and RND4 (top to
bottom) upto 250 turn-over times at intervals of 35.7 turn-
over times.
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TABLE II: Amplitude of the terms in Eq. (9). The time derivative dE3D/dt was obtained using centered finite di↵erences from
the data. ⇧(kk = 0) represents energy per unit of time transferred from 2D to 3D modes, and ✏3D is the power injected in
the 3D modes. ⇧l.h.s.

3D is the flux of energy in the 3D modes estimated from Eq. (29), ⇧est.
3D is estimated from Eq. (31), and

2⌫
R
k2Z3D(k) dk is an estimation based on the energy dissipation rate.

Run dE3D/dt ⇧(kk = 0) ✏3D ⇧l.h.s.
3D ⇧est.

3D 2⌫
R
k2E3D(k)dk

TG 1.0⇥ 10�4 �2.0⇥ 10�3 3.0⇥ 10�2 2.8⇥ 10�2 1.0⇥ 10�2 1.0⇥ 10�2

RND1 1.0⇥ 10�4 �6.8⇥ 10�3 4.6⇥ 10�2 3.9⇥ 10�2 2.0⇥ 10�2 2.0⇥ 10�2

RND4 4.0⇥ 10�5 �6.3⇥ 10�3 4.6⇥ 10�2 3.9⇥ 10�2 2.0⇥ 10�2 3.0⇥ 10�2

ANI1 1.0⇥ 10�4 �5.2⇥ 10�3 8.9⇥ 10�3 3.6⇥ 10�3 4.0⇥ 10�2 4.0⇥ 10�2

ANI2 1.0⇥ 10�4 �2.3⇥ 10�3 9.3⇥ 10�3 6.9⇥ 10�3 2.0⇥ 10�2 1.0⇥ 10�2

ANI3 1.0⇥ 10�4 �6.9⇥ 10�4 6.5⇥ 10�3 5.7⇥ 10�3 2.0⇥ 10�3 5.0⇥ 10�3

ANI4 3.0⇥ 10�5 �6.0⇥ 10�4 5.4⇥ 10�3 4.7⇥ 10�3 2.0⇥ 10�3 4.0⇥ 10�3

ABC �2.0⇥ 10�4 8.3⇥ 10�2 2.0⇥ 10�2 1.0⇥ 10�1 3.0⇥ 10�2 3.0⇥ 10�2

TABLE III: Amplitude of the terms in Eq. (10). The time
derivative dE2D/dt was obtained using centered finite di↵er-
ences, ✏2D is the power injected in the 2D modes, and ⇧l.h.s.

2D

is the flux of energy in 2D modes estimated from Eq. (30).

Run dE2D/dt ✏2D ⇧l.h.s.
2D

TG 4.0⇥ 10�4 1.0⇥ 10�10 1.6⇥ 10�3

RND1 1.0⇥ 10�3 1.3⇥ 10�3 7.1⇥ 10�3

RND4 2.0⇥ 10�3 1.5⇥ 10�3 5.8⇥ 10�3

ANI1 1.0⇥ 10�3 1.1⇥ 10�3 5.3⇥ 10�3

ANI2 4.0⇥ 10�4 7.0⇥ 10�4 2.6⇥ 10�3

ANI3 7.0⇥ 10�5 5.0⇥ 10�4 1.1⇥ 10�3

ANI4 8.0⇥ 10�5 6.4⇥ 10�4 1.1⇥ 10�3

ABC 5.0⇥ 10�4 7.0⇥ 10�2 �1.3⇥ 10�2

the evolution of the e(k?, k|| = 0) spectra over time, as
shown in Fig. 2, is evidence of occurrence of the inverse
cascade of energy in the slow manifold. It may also be
worth pointing out that with increasing � (anisotropy),
⇧

2D, for the ANI runs, become less positive and seems
to approach the nature of the energy cascade exhibited
by the ABC run (see table III).

The picture that emerges for the fluxes from the values
in tables II and III is illustrated schematically in Fig. 10.
For isotropic forcing, a fraction of the energy injected into
the 3D modes is transferred to the slow manifold and the
remaining 3D energy is transferred to the 3D modes with
larger wavenumbers.

Recently, [41] did a detailed study of energy transfers
in forced rotating turbulence and concluded that the for-
mer transfer, from the 3D to the 2D modes, is non-local.
The results in [41] (with simulations forced at smaller
wavenumbers than in our case) are consistent with our
results, except that they attribute the development of the
⇠ k�3 spectrum in the 2D modes to a direct cascade of
enstrophy once the 3D modes inject energy directly into
the 2D modes with the smallest wavenumbers. Although
our analysis cannot disprove this conjecture, the ampli-
tude of the terms in tables II and III and the nature of
the evolution of the 2D energy spectra in Fig. 2 hints at
a likely inverse transfer of energy in the slow manifold.

FIG. 10: A schematic depiction of the direction of transfer of
energy (and corresponding fluxes) in the case of forced rotat-
ing turbulence. Here fm is the normalized unit amplitude of
forcing in Fourier space. The black dots indicate the modes
that are directly excited by the di↵erent forcing functions,
with 2fm indicating twice the energy injected in that mode
compared to the energy injected into other modes. Directions
of the arrows are based on the analysis of data from tables II,
III and Figs. 2, 4.

For anisotropic and ABC forcing the picture changes.
As more energy is injected directly into the 2D modes
by the forcing, the flux of energy from the 2D to the
3D modes, ⇧(kk = 0) in table II, increases (from larger
negative values to smaller negative values) and eventually
reverses sign becoming positive. In the ABC flow (and
likely for other flows with very high anisotropic forcing),
the energy injected directly into the 2D modes undergoes
an inverse cascade in the slow manifold, and later the
excess of energy in these modes relative to the 3D modes
“leaks” energy into the 3D modes at large scales (see
Fig. 10). As the e↵ect of the 3D modes over the 2D
modes is less relevant in these runs, the runs with either

small or positive ⇧(kk = 0) display ⇠ k
�5/3
? scaling.

It is also interesting to point out that the 2D and



• Euler equations for an ideal, incompressible 
fluid with uniform density (1757): 

• The equations can be written as 

     with 
• Note that when 
     the non-linear term becomes zero.

HELICITY AS AN INVARIANT OF 3D EULER
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• When maximal,  
• Helicity is thus associated with 

corkscrew motions. 
• As the non-linear term in the 

momentum equation becomes zero or 
negligible, helical flows are very stable.

HELICAL FLOWS

dVH ∫ ⋅= uω

uω ×∇=

0=×uω



• In 1958 Woltjer introduces the magnetic helicity 
(later studied by Chandrasekhar and Kendall): 

• In 1967, Moffatt finds its hydrodynamic 
equivalent: 

• Helicity is zero for 2D flows, and it is a 
conserved quantity in 3D hydrodynamics 
(without and with rotation). 

• Helicity measures the structural complexity of 
the flow: it is proportional to the number of links 
in the field lines. 

• What is the role of helicity in atmospheric, 
geophysical, and astrophysical flows?

HELICITY WAS DISCOVERED “RECENTLY”

dVHm ∫ ⋅= AB

dVH ∫ ⋅= uω

AB ×∇=

uω ×∇=

ω

u



Helical flows are relevant for many 
applications: 

• Solar and geophysical dynamo: helical 
flows are known to sustain large-scale 
dynamo action (Parker 1955, Pouquet et 
al. 1976, Krause & Rädler 1986).  

• Helical velocity fields result in the 
“alpha-effect”, and in the generation of 
magnetic fields by self-induction. 

• The large-scale magnetic fields 
generated by this mechanism are 
helical. 

• The mechanism is also relevant in the 
presence of kinetic effects (Mininni, 
Gómez & Mahajan 2003)

THE ROLE OF HELICITY

Berger (1999)



• Helical magnetic fields are observed in the solar wind and the magnetosphere. 
• Magnetic fields can be reconstructed from observations of eruptions (e.g., from 

TRACE), using minimization methods to obtain force-free fields (Titov & 
Demoulin).

THE ROLE OF HELICITY

Török & Kliem  (2005)



Helical flows are relevant for many 
applications: 

• Atmospheric flows: Lilly (1986) 
speculated that rotating convective 
supercell storms are more stable 
because flows are helical. 

• Some authors claim that helicity may 
play a role in the self-organization of 
the flow leading to formation of 
tornadoes (Montgomery 2006, Levina 
2013). 

• Indices based on helicity are used for 
forecasting purposes.

THE ROLE OF HELICITY



A measure of the potential for cyclonic 
updraft rotation in right-moving supercells. 
It is calculated for the lowest 1-km and 3-
km layers above ground level. Large values 
suggest an increased threat of tornadoes.

STORM RELATIVE HELICITY



A normalized index to take into account energy 
available in shear. Values greater than 1-2 have 
been associated with significant tornadoes.

ENERGY-HELICITY INDEX



NON-HELICAL ROTATING TURBULENCE

Energy
Ro = 0.01 

5123 Enstrophy



Ro = 0.01 
5123 HelicityEnergy

NON-HELICAL ROTATING TURBULENCE



• 5123 to 30723 spatial resolutions. 
• Re up to 10000, Ro down to 

0.06. 
• Laminar column-like structures 

develop in the flow. 
• Structures are helical and stable.

HELICAL ROTATING TURBULENCE
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Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)
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ENERGY SPECTRUM IN ROTATING FLOWS

Helical case: 
• Inverse cascade of energy and 

direct cascade of helicity. 
• The direct energy flux is sub-

dominant to the helicity flux. 
• The energy spectrum becomes 

steeper than k⊥-2.

H

E

E (Ro≈0.07)

E (Ro≈10)

Mininni, Alexakis & Pouquet, PoF 21, 015108; Mininni & Pouquet, PRE 79, 026304 (2009) 

Non-helical case: 

• An inverse cascade of energy 
develops for small Ro. 

• The flow becomes anisotropic. 
• The spectrum goes towards k⊥-2.

Ω≠0, h=0

Ω=0



THE HELICITY CASCADE

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)

H(k) k -1.85

E(k) k -2.15



• With rotation, energy goes towards large scales and helicity dominates the direct 
cascade: the helicity flux is constant δ ~ hl τΩ

 /τl
2
 ~ hl ul

2/(l⊥
2 Ω), and hl  ~ l⊥

2/ul
2. 

• If E(k⊥) ~ k⊥
–n, H(k⊥) ~ k⊥

-4+n or E(k⊥)H(k⊥) ~ k⊥
-4 

• From Schwarz, n ≤ 2.5 (the equality corresponds to maximum helicity).

HELICAL ROTATING TURBULENCE

Mininni & Pouquet, PRE 79, 026304 (2009), Phys. Fluids 22, 035105 (2010), JFM 699, 263 (2012)

H(k) k -1.85

E(k) k -2.15



• The product of the energy and helicity spectra follow a ~ k⊥
-4 law in several 

runs with rotation and helicity.  
• The amount of helicity flux that goes towards small scales (normalized by 

the direct energy flux) increases with decreasing Rossby number, indicating 
the dominance of a direct cascade of helicity. Baerenzung et al., JAS (2011). 

• The “n+m = 4” rule has been shown recently to be exact for rotating 
turbulence in the weak turbulence regime  (Galtier 2014).

THE K-4 SPECTRUM AND THE DIRECT HELICITY FLUX



INTERMITTENCY: STRUCTURE FUNCTIONS

• For a component of a field f we define the 
 longitudinal structure functions 

 where the longitudinal increment is 

  
where f is in the direction of l. 

• If the flow is self-similar we expect 

 with the exponents linear in p. 

• For isotropic turbulence then ζp=p/3, for a non-helical rotating flow 
ζp=p/2, and for the helical case ζp=3p/4. 

• In practice departures from the straight line are observed, and the 
anomalous scaling observed in the data is the result of intermittency.



• Non-helical rotating turbulence is less intermittent than isotropic turbulence, 
but even at late times the exponents still deviate from a straight line. 

• The second order exponent is close to the theoretical value of 1. 
• Helical rotating turbulence is almost scale invariant. 
• The second order exponent is close to 1.4 (for a flow with maximum 

helicity, 1.5 is predicted).

SCALING EXPONENTS

Mininni & Pouquet, Phys. Fluids 22, 035105 (2010)



• Does the presence of helicity affect the 
decay of turbulence? Does it affect the 
lifetime of structures? 

• Note different decay laws have been 
measured in simulations and experiments. 
Morize, Moisy, and Rabaud 2005; Morize 
and Moisy 2006, van Bokhoven et al. 2008, 
Davidson 2010. 

• Does helicity affect the turbulent transport 
and diffusion of contaminants?

ARE THERE ANY IMPLICATIONS?



• Simulations of bounded freely decaying turbulence, with and without rotation/
helicity. 

• Without rotation, helicity plays no role in the decay, except for a delay of the 
beginning of the self-similar regime 

• With rotation, the helical flow decays slower. 
• The decay laws can be correctly predicted taking into account the presence of 

helicity.

FREELY DECAYING FLOWS

Teitelbaum & Mininni, PRL 103, 014501 (2009)

Ω=0, h=0
Ω=0, h≈1

Ω≠0, h≈1

Ω≠0, h=0



“BOUNDED” FREELY DECAYING TURBULENCE

• From the energy balance: 

• In the absence of rotation: 

• If L~L0 (constant), then 

• With rotation (no helicity): 

     which for constant L leads to E(t) ~ t -1. Squires et al. 1994; Morize et al. 2005. 

• Taking into account the helicity cascade, it leads to E(t) ~ t -1/3. 
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SIMULATIONS OF DECAYING TURBULENCE

• Several DNS and LES with initial E(k�) ~ k�3 large-scale spectrum. 

• If the parallel integral scale has not saturated, the 3D modes decay as in non-
rotating turbulence! 

• Is that all?

3D

2D



A VARIETY OF DECAY LAWS

• “Unbounded” 2D modes 
(with ~ k� large-scale energy 
spectrum, with “bounded” 
3D decay. 

• “Bounded” 2D helical decay 
with “bounded” 3D helical 
decay.



• Horizontal turbulent diffusion of a passive scalar is smaller in rotating 
helical flows than in rotating non-helical flows.

TRANSPORT AND MIXING

Rodriguez Imazio & Mininni, PRE 87, 023018 (2013)
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FIG. 11: Passive scalar concentration in a horizontal plane in
run Cx1, at times t = 0, 1, 1.5, and 2.5 from left to right and
from top to bottom.

FIG. 12: Passive scalar concentration in a horizontal plane at
t = 1 in runs Ax1 (left, no rotation) and Ex1 (right, Ω = 8).

before in [8] and explained as an effect of the Coriolis
force. In our runs, the passive scalar at t = 0 is con-
centrated in a narrow band around x = π. The average
flux is thus towards positive values of x for x > π, and
towards negative values of x for x < π (i.e., in the direc-
tion of −∇θ, see Fig. 2). The Coriolis force in Eq. (1)
is −2Ωẑ × u and therefore on the average this force cre-
ates a drift of the flux towards positive values of y in the
x > π region, and towards negative values of y for x < π
[8]. This explains the bending of the initial profile we
observe of the runs with rotation, that is not observed in
the runs without rotation (see Fig. 12 for a comparison).

Diffusion in the parallel direction is of a different na-
ture, and more strongly dependent of the structures
that emerge in rotating turbulent flows. Rapidly ro-
tating flows are characterized by columnar structures in
the velocity field and vorticity, associated with a quasi-
bidimensionalization of the flow. The mechanism un-
derlying the transfer of energy towards two dimensional
modes and responsible for the formation of these columns

FIG. 13: Passive scalar concentration in a vertical plane in
run Cz1, at times t = 0, 1, 1.5, and 2.5 from left to right and
from top to bottom.

seems to be associated with wave resonances in the
energy-exchanging triadic interactions [36]. Two-point
closures of turbulence, such as the Eddy Damped Quasi-
Normal Markovian closure (see, e.g., [33]) successfully ex-
plain the emergence of columns with the same principle.
However, there are alternative theories that consider the
formation of columns as the result of a relative concentra-
tion of kinetic energy in cylindrical structures resulting
from the conservation of linear and angular momentum
[37].

Columnar structures have been reported in many nu-
merical simulations of turbulent flows (see, e.g., [38]). As
these columns live for long times and move across the do-
main, they play an important role in the mixing of the
passive scalar. Figure 13 shows a cut in a vertical plane
of the passive scalar concentration at different times in
run Cz1. Note that diffusion is different from the one ob-
served in horizontal planes in the same run (Fig. 11), and
from the one observed in the isotropic and homogeneous
case (Fig. 12 (a)). The passive scalar is diffused from its
initial profile in vertical stripes, that are stretched fur-
ther (thus increasing the mixing) as time evolves. This
stripes are created by updrafts or downdrafts inside the
columns. As these columns go through the region with
large concentration of the passive scalar, the updrafts or
downdrafts mix the passive scalar with the regions im-
mediately above or below.

IV. CONCLUSIONS

We used 56 direct numerical simulations with regular
spatial resolution of 5123 grid points to measure turbu-
lent diffusion in directions parallel and perpendicular to
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Phys. Scr. T155 (2013) 014037 P R Imazio and P D Mininni

Figure 6. (a) Reduced perpendicular helicity spectrum, (b) energy
spectrum and (c) passive scalar spectrum for run B3 (helical
turbulent flow with � = 16). In all cases slopes are indicated as
references.

for V (k?) is associated with a change in the energy spectrum
when helicity is present.

The energy spectrum in (helical) runs B2 and B3 is
steeper than in the (non-helical) runs A2 and C2, as can be
also seen in figures 5 and 6. The inertial ranges are compatible
with a ⇠ k�2.2

? power law. This result is compatible with the
results reported in [14], where numerical simulations were
presented showing that in rotating helical flows the direct flux
of helicity dominates over the direct flux of energy, affecting
the scaling law for the energy in the direct cascade range.
A phenomenological argument was also presented, which,
assuming that the direct cascade of helicity is dominant,
results in a spectrum E(k?)H(k?) ⇠ k�4

? . In other words, if
the energy spectrum satisfies E(k) ⇠ k�n , then the helicity
should scale as H(k) ⇠ k4�n; n becomes larger (and the
energy spectrum steeper) as the flow becomes more helical,
with the limit n = 2.5 for the case of a maximally helical
turbulent flow (in practice, this limit cannot be obtained,
as a flow with maximal helicity has the nonlinear term in
the Navier–Stokes equation equal to zero, and therefore no
transfer can take place).

The behavior of the helicity spectrum in runs B2 and B3
is consistent with the phenomenological argument described
above. In figures 5 and 6, a scaling ⇠ k�1.8

? is indicated
as a reference, which seems compatible with the behavior

Figure 7. Reduced perpendicular spectra for the helicity
(dash-dotted line), energy (solid line), and passive scalar (dashed
line) compensated for, respectively, by k�1.8

? , k�2.2
? and k�1.4

? , in
helical runs (a) B2 and (b) B3.

of H(k?). Compensated spectra for the energy, the helicity
and the passive scalar for runs B2 and B3 are shown in
figure 7. Good agreement between the reference slopes and
the numerical data is apparent.

Following the phenomenological argument mentioned
above for the energy spectrum, we can put forward a simple
argument to explain the difference observed in the scaling of
the passive scalar in rotating helical and non-helical turbulent
flows. From equation (3), it can be seen on dimensional
grounds that for scales in the inertial range, the passive scalar
flux across the scale l? (equal to the passive scalar injection
rate) � = @t h✓2i must be

� ⇠ ✓2
l?ul?

l?
, (7)

where ✓l? is the characteristic concentration of the passive
scalar at the scale l?, and ul? the characteristic velocity (since
the flow becomes anisotropic in the presence of rotation, we
are assuming that most of the fluctuations are concentrated
in structures with weak variation in the direction along the
axis of rotation). If � is constant in the inertial range, we can
estimate the passive scalar spectrum V (k?) ⇠ ✓2

l?/k? from
equation (7) as

V (k?) ⇠ � l2
?

ul?
. (8)

If the energy spectrum is E(k?) ⇠ k�n
? , and therefore the

characteristic velocity at a scale l? is ul? ⇠ l1�n
? , the passive

scalar spectrum results

V (k?) ⇠ � l
5�n

2
? ⇠ �k

� 5�n
2

? . (9)
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FIG. 10: (a) Averaged horizontal concentration ✓ in run B1
x

,
at times t = 0, 0.5, 1, 1.25, and 1, 5. denoted by solid, dotted,
dash, dash-dotted and dash-triple-dotted lines respectively.
(b) Horizontal flux at the same times. (c) Horizontal turbu-
lent di↵usion at the same times.

and averaging we obtain

@✓

@t
= �r · (u✓0), (21)

and subtracting this equation from Eq. (3) we obtain

@✓

@t
= �r · (u✓). (22)

We can integrate this last equation assuming the flow
is correlated over the integral eddy turnover time ⌧ , to
obtain

✓0 ⇡ �⌧r · (u✓) = �⌧u ·r✓, (23)

FIG. 11: Horizontal turbulent di↵usion as a function of time
for runs A3

x

(solid) and B1
x

(dashed) (non-rotating, non-
helical and helical, respectively).

where incompressibility was used. Then, replacing in
Eq. (21),

@✓

@t
⇡ @

@x
i

(⌧u
i

u
j

)
@✓

@x
i

, (24)

where the coe�cient ⌧u
i

u
j

can be interpreted as a tur-
bulent di↵usion. If the flow is isotropic, then D ⇡ ⌧u2. A
more refined mean field derivation can be found in [41–
43], while two point closure derivations can be found in
[44, 45].

Although the argument above is only illustrative, it
gives an interesting hint to the possible cause of the re-
duced perpendicular di↵usion in helical rotating flows.
As the perpendicular energy spectrum in this case is
steeper than in the absence of helicity, then the smaller
energy at small scales results in less mixing and di↵usion.

Figure 15 shows the mean vertical passive scalar con-
centration ✓(z), the mean vertical flux ✓v

z

(z), and the
vertical di↵usion D

z

(z) at di↵erent times in run B3
z

. In
this case, the profiles are more similar to those obtained
in the isotropic and homogeneous case: ✓(z) and ✓v

z

(z)
are respectively symmetric and antisymmetric with re-
spect to z = ⇡.

As in the case of horizontal di↵usion, we can obtain
the vertical turbulent di↵usion coe�cient as a function
of time by computing the mean value of D

z

(z, t) for all
values of z. Figure 16 shows D

z

(t) for runs A5
z

and B3
z

(both with R
o

= 0.01, non-helical and helical, respectiv-
elly). It is clearly seen that vertical di↵usion is increased
in the presence of helicity.

Results shown above suggest that horizontal di↵usion
is a↵ected by the presence of helicity. Figure 17 shows
a horizontal plane of the passive scalar concentration in
runs A5

x

and B3
x

at t = 1. As previously shown in [14],
the initial Gaussian profile in run A5

x

di↵uses in time,
and also bends and rotates. This bending is due to the
Coriolis force, and was previously observed in [12]. For
run B3

x

, we also observe this bending e↵ect, although
the initial profile is much less di↵used.



• From the momentum equation

REGULARITY

Biferale & Titi (2013)  

( ) Fvvvv
+∇+−∇=∇⋅+

∂
∂ 2νP
t

⇒
dE(k)
dt

= − vk ⋅ v p ⋅∇( )vq%& '(∫
p,q
∑ d3x − 2νZ(k)+ε(k)



• A helical-decimated version of 3D 
Navier-Stokes displays an inverse 
cascade of energy, with a direct 
cascade of helicity. 

• The system also has regular solutions 
(i.e., no singularity).

Biferale & Titi (2013)  

H

E

Mininni & Pouquet, PRE 79, 026304 (2009)

REGULARITY



• Rotating flows provide a relatively simple example to understand the 
effect of restitutive forces and of waves in turbulence, with applications 
at the large scales of many geophysical and astrophysical flows. 

• The presence of inertial waves results in the dominance (at least at some 
scales) of resonant and near-resonant interactions, which lead the flow 
towards a quasi-2D state. 

• The role of near-resonant interactions and eddies (in particular, the effect 
of sweeping at intermediate scales) cannot be trivially neglected. 

• The accumulation of energy in 2D modes can drive an inverse cascade 
of energy towards large scales. 

• Helicity can be a major player in this problem, affecting the energy 
scaling and the cascades. 

• This has implications in intermittency, the decay of turbulence, transport 
and mixing, and regularity of solutions.

CONCLUSIONS


