PHARAO SPACE CLOCK

Science team:

Prime contractor, AIV:

CENTRE NATIONAL DISTUDES SPATIALES

Main manufacturers: **DERD DERD DERD THALES EREMS**

PHARAO clock Main characteristics

- Cold cesium atoms prepared by laser cooling techniques
- Measurement of the hyperfine frequency resonance (definition of the second) induced by a microwave oscillateur
- To frequency locked the microwave oscillator
 This oscillator delivers the atomic-referenced signal to lock the Hmaser which provides the continuous ACES proper time.

Performances objectives of PHARAO: Frequency stability ≤10⁻¹³ t^{-1/2} (<3.10⁻¹⁶ 1-20 days) Frequency accuracy <3.10⁻¹⁶

Short Term Frequency Stability

Signal to noise ratio of the detected signal

3 main contributions:

Number of detected atoms

Many captured cold atoms with the lowest temperature.

Laser power, frequency and power noise

Phase noise of the microwave signal

• Microwave synthesis from Ultra-stable quartz oscillator

And the hyperfine resonance linewidth

- Adjustable in microgravity (2 orders of magnitude)
- Limited on ground by gravity

Frequency accuracy

	Correction (10 ⁻¹⁶)	Main Evaluation method	Expected uncertainty (10 ⁻¹⁶)
Quadratic Zeeman effect (magnetism)	-400	Clock measurement	0.2
Black body radiation (thermal photons)	150	Temperature measurement	0.6
Cold collisions (density)	35	Clock Measurement	<2
First order Doppler (phase gradient)	1	Clock Measurement	<1
Microwave spectral purity&leakage	0.5	Measurement Sub-systems	<0.5
Microwave lensing (recoil)	-1	Calculation	<0.5
Total	-214.5		< 3

PHARAO development

Engineering model (EM): fully operational but not space qualified.

Delivery 2006, Assembling, Verification, Performances and EMC tests.

On ground, lower performances larger resonance linewidth

Physical Package

PHARAO EM tests: main results

Frequency stability : performances validated

Frequency accuracy: 2x10⁻¹⁵ but 3 issues:

Magnetic field inhomogenity: Zeeman shift uncertainty 5.10⁻¹⁶ Magnetic field isolation (orbit field): 70 000 (shield and active compensation) 5.10⁻¹⁶ Microwave spectral purity: phase transient : 6.10⁻¹⁶

PHARAO MSTH

MSTH structural and thermal model: verification of robustness in thermal (-40, +60°C) and in mechanical (~20 grms) environment.

Results Cesium tube: no margin on mechanical stress Low temperature accuracy (blackbody)

Laser source: optical alignments instability for thermal environments

Flight model status

PHARAO Flight Model

Microwave source:

Electronic improvement

- FM qualified and delivered
 - Performances measurement
 - Frequency stability contribution 8.10⁻¹⁴ (in microgravity)
 - Frequency accuracy contribution < 5.10⁻¹⁷

PHARAO Flight Model

Cesium tube

- **Mechanical structure**
- **Thermal: best temperature control**
- Magnetism
- Vacuum level
- Cesium tube is qualified and delivered
- Assembled with the other EM sub-systems (clock operation)
 - No magnetism issues
 - Thermal verification in progress

PHARAO Flight Model

Laser source Better Optical structure

The FM is assembled

- Thermal settings (-40, +40)
- Performances tests in progress
- Qualification tests Nov.

Planning

The Clock flight model will be assembled on january 2014 on ACES baseplate (at CNES)

- To perform measurements on
- Cold atom manipulation
- and to measure the two last systematic effects: cold collision and Doppler shift (3 months)

To be delivered to Astrium for the whole ACES payload integration and tests