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Space and fundamental physics 

■ astrophysics and particle physics tend to join together through 
various problems linked to 
w  the unification of the fundamental interactions of nature ... 
w … and the specificity of gravity with respect to the other interactions (weak, 

electromagnetic, strong) 
w search of new fields / particles predicted by the unification theories 

■ ultimate goal : a new physics beyond General Relativity and 
the Standard Model of particle physics 
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The origin (and fate ?) of the universe 

Findings: 
Ø  at large scale, the universe has a 
flat geometry 
Ø less than 5% of its content is 
made of «ordinary» matter 
Ø expansion tends to re-accelerate 

Question: 
Ø  what is the nature of dark 
matter and dark energy ? 
[do they exist ?] 

4,9% :  baryonic matter (cf. nucleosynthesis) 
with visible matter < 1% 

26,8% :  « dark matter » 
(cf. galaxy dynamics) 

68,3% : « dark energy » (ρ=ρc and Λ ≠0)	



All-sky map of dark matter distribution in the universe 
(Credit: ESA and the Planck collaboration) 



decelerated expansion, 

re-accelerated 
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quantum gravitation 
« Planck  era » inflation phase 
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gravitation vs  
« dark energy » 



The picture of physics today 

ð  2 theories very different in nature and structure: 

ð  at large scale, General Relativity (GR) 
•  a geometrical, non quantum theory of gravitation 

ð  at atomic and subatomic scale, the « Standard Model » of 
particle physics 

•  quantum field theories 
•  electromagnetic interaction 
•  weak interaction 
•  strong interaction 
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General Relativity 

ð  frame : the global Lorentz invariance of special relativity 
becomes a local invariance (RG as a gauge symmetry) 

R = G . T + Λ 
R : space-time curvature  
G : gravitational constant 
T : mass-energy density 
Λ : « cosmological constant » 

ð  now, in spite of its successes, GR cannot be the ultimate 
theory of gravitation, e.g.: 
•  it exhibits an embarrassing singularity at t=0 
•  it does not take into account the quantum effects, 

predominant in the primordial universe (« Planck era » : t 
<10-43s), nor the subsequent inflation phase 

•  significance of the cosmological constant Λ ? 
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The « Standard Model » of particle physics 

frame : special relativity + local invariances under gauge 
symmetry groups G (e.g. U(1) group for electromagnetism) 
 
those G symmetries are suppposed to account for the 
bestiary of fields and particles of ordinary matter 
 
ð standard scheme: SU(3)xSU(2)xU(1) + Higgs-Englert 
mechanism 
ð it accounts for the known interactions and the number and 
type of known elementary particles … 
ð … but not for the mass of the particles and the coupling 
constants (set of free parameters) 
ð it does not explain everything 

•  e.g. matter- antimatter dissymmetry 
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A multiple and coherent approach 

■ probing the early universe 
w  the CMB 
w a dark matter probe 

■ probing the violent universe 
w  the space observatories 
w a gravitational wave observatories 

■ space as a laboratory 
w probing GR in the near-by space 
w  testing the EP 
w space and time metrology 
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Probing the early universe: the CMB 

■ the primordial universe ; fine study of the cosmological 
background radiation (CMB) 
■ probing the geometry and content of the universe 
■  precise measurement of the cosmological parameters (Ω = ρ / 
ρc , Λ , Η) 

•  balloons : BOOMERANG, ARCHEOPS 
•  satellites : COBE, WMAP, PLANCK 

■ COBE : evidence of the inhomogeneities of the CMB at a level 
of 10-6  
■ WMAP 
■ PLANCK 
■ future mission ? : PRISM (traces of the primordial gravitational 

waves in the CMB polarization) 
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Cosmology as an observational science 

1992 

2003 

2012 

The Cosmic Microwave Background seen by Cobe, WMAP, Planck 
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PLANCK cosmological results (April 2013) 
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(credit: ESA / Planck collaboration 
HFI PI: JL Puget, IAS, Orsay, France; 
LFI PI: N Mandolesi, ITSRE, Bologne, Italy) 



Probing the early universe: 
Euclid (ESA, 2019) 

Euclid satellite 
artist’s view (credit: ESA) 

Objective: to understand the 
nature of dark energy through 
accurate measurement of the 
accelerated expansion of the 
universe  

Expansion history of the universe 
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Probing the early universe : 
the space observatories 

■ very distant (i.e. young) objects 
(z>10) : first stars and early galaxy 
formation 
■ muti wavelength approach : 
observations in all the frequency 
ranges of the electromagnetic 
spectrum 

w FIR / submm : HERSCHEL, [SPICA] 
w visible / NIR : HST, JWST 
w X : CHANDRA, XMM-NEWTON, 

[ATHENA?] 
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The cold universe (FIR, submm) 
 
Herschel image of the Eagle Nebula, using 
the PACS (Photodetector Array Camera) 
and the SPIRE (Spectral and Photometric 
Imaging Receiver) instruments 
(credit: ESA / HERSCHEL / PACS & SPIRE) 



Probing the violent universe : 
the space observatories 

The hard X-ray sky at energies 
between 50 and 100 keV 
(credit: ESA / INTEGRAL / SPI) 
 
SPI is a gamma ray spectrometer 
developed by IRAP (CNRS & 
Toulouse university) and CNES 
for ESA’s Integral mission  

goal: study the sources of intense and/or rapidly variable 
gravitational fields 
 
compact objects: AGN, neutron stars, black holes 
INTEGRAL, CHANDRA, XMM-NEWTON 
 
violent transient phenomena: gamma-ray bursts 
SWIFT, SVOM 
 

14 



Probing the violent universe: 
a gravitational wave observatory 

■ gravitational waves: a new 
window for astrophysics 

■ e-LISA (ex NGO) will survey 
for the first time the low-
frequency gravitational wave 
band (about 0.1 mHz to 1 Hz), 
with sufficient sensitivity to 
detect interesting individual 
astrophysical sources out to 
z = 15 
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§  e-LISA will study a variety of 
cosmic events and systems 
e.g. coalescence of massive 
black holes, black hole 
consuming  smaller compact 
companion; binary compact 
objects 

 



The unification theories 

most unification theories include common 
ingredients: 

•  extra dimensions (4d à10d) 
•  larger symmetries  

ð those ingredients assume or imply new features 
which would appear as hypothetical extra fields / 
particles 

ð can they account for dark matter and/or dark 
energy? 
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The unification theories 

■ if those extra fields interact in a different way with leptons and 
baryons, their coupling with matter depends on the chemical 
composition, which results in a violation of the Equivalence 
Principle (EP) beyond a certain degree of accuracy 

■ if the extra fields get a mass through some mechanism then 
the laws of gravitation will appear modified below some scale 

ð  the predictions of those theoretical elaborations shall be 
confronted with experiment, which allows to eliminate or to 
constrain certain models 
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Consequences 

ð  accurate testing of the gravitation laws at various scales, in 
particular tests of GR in the solar system and in the near-by 
space : 

•  accurate metrology of time and space 
•  accurate measurement of the post-newtonian parameters 

q  test the observable consequences of the unification theories, 
e.g. test the Equivalence Principle 

q  the space assets will be an essential tool for testing the 
observable consequences of the unification theories 
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Testing the laws of gravitation 
at different scales 
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laboratory 
experiments 

space 
experiments 

interplanetary 
probes 

astrophysical 
observations 

a few 
light- years 
(near-by 
stars) 

a few 106 
light- years 
(near-by 
galaxies) 

distant 
galaxies 

early 
galaxies 1AU to 1000 AU 

106m 

poor poor good rather good good 

1mm 1µ 

rather 
good 

1 AU 



Probing GR in the near-by space 

■ several effects predicted by GR have been accurately verified 
in the solar system and in the vicinity of the Earth 
■ gravitational redshift (Einstein effect); frequency shift of clocks 

in a gravitational field 
w experiment GP - A (Vessot, 1976) 
w project T2L2(2003), PHARAO / ACES (2015) 
w GNSS signals: GPS, Galileo 

■ time-delay (Shapiro effect) 
w  interplanetary probes : Voyager (1991) : |γ - 1 | < 2.10-3 

■ deflection of light by a massive body 
w VLBI, Hipparcos, Gaia 
w Hipparcos data (1995) : |γ - 1 | < 10-3 

■ frame dragging, geodetic precesssion 
w GP-B (Everitt, 2004) 

20 



Probing GR in the near-by space 

■ Earth-Moon distance measured by laser ranging 
w EP test (eventual polarisation toward the Sun of the Moon’s orbit around 

the Earth) « effect Nordvedt » 
w measurement of the PPN 
[J.G. Williams, S.G. Turyshev, D.H. Boggs, IJMPD 18, 1129 (2009)] 
 

§ radio-science experiments / tracking data analysis of the 
interplanetary probes: 
w Pioneer, Voyager, Cassini, Juice (3GM, PRIDE) 
w best measurement of γ today: Cassini 

•  Doppler tracking during the Earth to Saturn cruise  

•  accurate radio tracking at the 2002 solar conjunction 
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51 (2.1 2.3) 10γ −− = ± ×

51 (12 11) 10β −− = ± ×



GAIA 

■ a census of 1 billion stars of 
our galaxy during its 5-year 
mission 
w  the primary goal of the Gaia 

mission is to study the 
composition, formation and 
evolution of our galaxy. Gaia will 
perform an all sky survey and 
will map the 3-d position and 
velocity of all objects down to 
20th magnitude 

w stellar evolution 
w small bodies of the solar system 
w exoplanets 

■ launch: November 20th, 2013 
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Ø  dark matter: Gaia measurements will 
precisely identify the gravitational 
disturbance traces due to the dark matter, 
thus enabling to refine the knowledge of its 
distribution 

Ø  fundamental physics: the bending of light 
due to the gravitational effect will be 
measured with an unprecedented 
precision, enabling to refine the PPN 
parameters 
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Testing the Equivalence Principle 

- best ground based experiments: 10-13 

[J.H. Gundlach, S. Schlamminger, T. 
Wagner, Space Science Reviews 148, 201 
(2009)] 
- space experiments: Microscope (CNES 
+ ESA, 2015) : 10-15 
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Space as a fundamental physics lab: 
the Microscope project 

objective: test of the Equivalence Principle between 
inertial mass and gravitational mass at 10-15 , i.e. 2 
to 3 orders of magnitude better than the best tests 
on ground 
•  principle : comparison of the motion of 2 test-masses 

made of different materials free-falling in the Earth’s 
gravitational field 

•  they are installed inside a drag-free satellite in order to 
compensate the effect of the non gravitational forces 
(residual atmosphere, radiation pressure) 
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Space as a fundamental physics lab: 
the Microscope project 

■  description : 
w  a drag-free microsatellite (CNES Myriad family) 
w  2 ultrasensitive differential accelerometers with 

capacitive detection by ONERA, France 
w  a set of cold gas thrusters 
w  contributions from Germany (ZARM funded by 

DLR, and PTB) and ESA (cold gas µ-thrusters) 

■  P.I. P. Touboul (ONERA) 

■  launch planned in 2016 

■  mission parameters 
•  Sun synchronous orbit 700 km, 6h/18h (9 

months without eclipse) 
•  Excentricity : 5x10 -3, inclination : 95° 

•  Nominal mission: 1 year 

Microscope, a microsatellite 
of CNES’s Myriad family 
(artist’s view, credit: CNES) 
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Space as a fundamental physics lab: 
PHARAO / ACES onboard the ISS 

■  PHARAO is an ultra stable (10-16 / day) 
and ultra precise (10-16) Cs cold atom 
space clock 

■  PI: C. Salomon (ENS/LKB), co-PI : P. 
Laurent (Obs. de Paris/SYRTE) 

■  CNES : space hardware development 
■  PHARAO is part of ACES (Atomic Clock 

Ensemble in Space) 
■  ACES will be installed by 2016 on the 

external balcony of Columbus on the 
ISS and will include 
w  the Cs cold atom clock PHARAO 
w  an active Hydrogen maser (Switzerland) 
w  a frequency comparator and a board-to-

ground µ-wave link (ESA) 
■  applications :  

w  fundamental physics experiment tests 
w  time & frequency metrology, time distribution 
w  future generations of positioning and 

navigation systems 
w  future cold atom devices , e.g. STE-QUEST: 

accelerometers, gyrometers, interferometers 

ACES on the ISS 
(artist’s view, credit: ESA) 
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Space as a fundamental physics lab: 
time metrology 

■ time metrology : T2L2 (Time 
Transfer by Laser Link)  
w high performance 2-way time 

transfer and comparison 
between remote ultra-stable 
ground clocks 

w comparison of various 
techniques of optical and micro-
wave time transfer (GPS, 
TWSTFT, ACES, GALILEO) 

w contribution to time scales and 
time distribution (TAI, UTC) 

w  tests of fundamental physics 
•  measurement of an eventual variation 

of the fine structure constant α  
•  isotropy check of the speed of light at 

the level of 2.7x10-9 (USO limitation) 

w passenger experiment onboard 
Jason 2 (launched in 2008) 

w PI: E. Samain, Observatoire de la 
Côte d’Azur (OCA\GEMINI) 

      

retroreflector 
(cube corner) 

onboard 
clock 

ground clock 

propagation of light 
pulses  between a ground 
based clock and a space 
clock 
2-way method : 
measurement of 3 dates 
(departure, on board arrival, return 
to Earth) 

detector 
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laser ranging station 

Stability : 10 ps from 10 to 100s  
Accuracy : < 500 ps 



Thank you for your attention 
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