

Reviving Stellar Intensity Interferometry with the Cherenkov Telescope Array: Laboratory simulation of stellar observations

Tiphaine Lagadec - Lund Observatory, Sweden

lagadec.tiphaine@gmail.com

Content

- A long held dream...
- Experimental simulations

Method

How to make an artificial star in the lab? The detectors The correlation

• Results

ID angular measurements2D angular maps2D binary star

• Pending issues

2 arrays \rightarrow Full sky coverage

km baseline $\rightarrow \sim \mu$ as resolution

many baselines \rightarrow covers uv-plane

Experimental simulation

End-to-end experimental simulation of SII

To be simulated:

- Multiple baselines
- Complex stellar structures

To be tested:

- Digital correlators
- Semiconductor detectors

Overall aim:

Demonstrate the procedure of SII with CTA

- Retrieve correlations between pairs of telescopes
- Retrieve signatures of complex stellar structures
- Retrieve images

<u>Requirements</u>:

- Small angular diameter
- Complex structures
- Bright and hot
- Chaotic thermal light (Gaussian amplitude distribution)

Requirements:

• Small angular diameter

Illuminated pinholes

100 μ m pinhole @ 23 m \Rightarrow 1 arcsecond star

Requirements:

Small angular diameter

Complex structures

Pinholes come in different shapes and sizes (round, elliptical, double aperture) ⇒ Simulating "realistic" star shapes and angular diameters

<u>Requirements</u>:

- Small angular diameter
- Complex structures
- Bright and hot

The problem of the temperature

SNR as a function of the source brightness temperature from R.Hanbury Brown and R.Q.Twiss:

Requirements:

Small angular diameter **Complex structures Dright and hot**

Laser radiation very bright

<u>Requirements</u>:

- Small angular diameter
- Complex structures
- Dright and hot
- Chaotic thermal light (Gaussian amplitude distribution)
- ? Laser radiation very bright <u>but not thermal</u> ! (no intensity fluctuations in space and time)

Requirements:

- Small angular diameter
- Complex structures
- Dright and hot
- Chaotic thermal light (Gaussian amplitude distribution)

Dynamic Light Scattering (DLS):

Coherent bright radiation <u>scattered</u> Resulting radiation is thermal and Doppler broadened

Dynamic Light Scattering

Requirements:

Small angular diameter but good photon fluxes • Complex structures **Dright and hot** • Chaotic thormal light (Gaussian spectrum)

 \Rightarrow We have our artificial star !

Scatterer: plastic micro-spheres or fat globules in milk

\approx 23m away

The method The detectors

Single Photon Avalanche Diode (Geiger mode APD)

- Analogous to planned CTA detectors
- Very high QE
- High gain
- Large bandwidth

- Compact
- Fast (~ns)
- Immune to magnetic fields

The method A 2D telescope array in the lab

The method A 2D telescope array in the lab

Rotating source angle enables 2D-array

The method The set-up

The results ID angular diameter

The results ID angular diameter

The results ID angular diameter

The results 2D angular diameter

The results 2D angular diameter

The results 2D binary star

Double aperture

The results 2D binary star

The results 2D binary star

60 baselines

Pending issues

- Image restoration
- Possible white light illumination ?
- Polarization effects ?
- Multiple spectral pass-bands ?

For details see:

Dainis Dravins & Tiphaine Lagadec: "Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array", in J.K.Rajagopal,
M.J.Creech-Eakman & F.Malbet (eds.): "Optical and Infrared Interferometry IV", SPIE Proc. 9146 (2014)

For details see:

Dainis Dravins & Tiphaine Lagadec: "Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array", in J.K.Rajagopal,
M.J.Creech-Eakman & F.Malbet (eds.): "Optical and Infrared Interferometry IV", SPIE Proc. 9146 (2014)

Thank you for your attention!