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Roman Gredig

rgredig@physik.uzh.ch

Prof. Dr. Ulrich Straumann

Dr. Achim Vollhardt
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1 Introduction
Imagine a source emitting narrowband but incoherent light (such as an ordinary sodium light) falling on to a
double slit and a subsequent screen. Since the source is incoherent the phase is fluctuating and there is no
consistent phase difference between the two waves emitted at the slits and thus there will be no interference
patterns produced by constructive and destructive superposition visible on the screen, the time averaged
intensities (the complex conjugate products of the incoming electric fields) coming from both slits will just add
up. But due to the random fluctuations of the phases the intensities will fluctuate. Counting individual photons
at photons at two different points on the screen will result in a coincidence rate slightly higher than the Poisson
coincidence rate, the intensity fluctuations are correlated. This additional term is what is called the Hanbury
Brown and Twiss (HBT) effect.

Now consider narrowband chaotic light emitted from a distant thermal source as an infinite 2 dimensional
superposition of sub sources (’slits’). Integrating the amplitude contributions over the new, extended source
amounts to taking the Fourier transform of the intensity or brightness distribution on the sky (Van Cittert
Zernike theorem). The normalized Fourier transform is called the complex visibility that can in principle be
measured at different spatial distances or baselines but measuring visibility directly is very difficult for astro-
nomical sources because it requires maintaining optical quality mirrors over long baselines to sub wavelength
accuracy (VLTI). Alternatively information on the visibility can be obtained by considering the normalized in-
tensity correlation (the probability of coincident detection at two detectors) for two detectors (1 and 2):

C12 = 1+ |V12|2 (1)

This equation is valid over a coherence time which is the time scale on which the phases of incoherent light
fluctuate:

�� ⇠ 1/�� = ���2/c. (2)

Let r be the average count rate for one detector. Over a coherence time �� the two detectors will count
around r correlated events each, thus (r��)2. The time resolution, or counting time of a detector �t will
be much larger than the coherence time �t � ��, so in one counting interval the HBT signal count will be
r2��2(�t/��) = r2���t. Note that the phase information of the electrical field is lost when measuring the
amplitude squared. But the great advantage is that optical parts need to be accurate only to ⌧ c�t.

In the 1950s Hanbury Brown and Twiss implemented these ideas in the first stellar intensity interferometer
that measured the diameter of Sirius and in the 1960s the Narrabri intensity interferometer was built to mea-
sure more stellar diameters (Hanbury Brown et al. (1974a)). At that time so called intensity interferometry
was limited to blue-sensitive counting equipment and has not been attempted for a long while since. The
possibilities of new, faster counters in red and infrared ranges have recently brought intensity interferometry
back into focus and arrays of telescopes such as the proposed Cherencov Telescope Array (CTA) will allow us
to exploit the effect to a greater extent in the years to come, see for example Dravins et al. (2013). Figure 1
shows the brightness distribution of a structured, crudely limbdarkened disk of 1mas radius and the simulated
signal of the HBT effect for different telescope baselines. The bottom right panel emphasizes the possibilities
of new arrays: it shows the (�,�) coverage of one hour observation time for a hypothetical setup of telescopes
proposed by the CTA consortium.

The loss of phase information 1 is the major short coming of intensity interferometry. But it is not a
fundamental short coming because from the theory of quantum optics developed in the 1960s, see Glauber
2006 for a review, phase information can be obtained by using 3 telescopes in concert. Malvimat et al. (2014)
have reviewed the theory of higher order correlations and given an elegant way of estimating the signal to
noise ratios achievable and in this study we will show case the feasibility of detecting 3 point HBT.

The normalized three point coincidence is:

C123 = 1+ |V12|2 + |V23|2 + |V31|2 + 2Re[V12V23V31] (3)

The last term is well known in radio astronomy as the bispectrum.
what does it look like ? can we do something with it ?
In section ...
Different algorithms on the market to recover phase from bispectrum, see for example ?. closure phase

allows to discard different atmospheric and other influences on phase of single detector and leaves phases for
baselines...

main conclusions:
3pt feasible with CTA type mirrors
Betelgeuse cannot use 10 m mirror, need to subdivide that.
minor: can do simple HBT with amateur setup
nearby stars -> further away scaling relations
resolve microlensing
(SN and maser examples or at least mention these)

SN - let’s approximate a super nova by putting Sirius in the LMC (at 41100 pc) and keeping the temperature
and angular diameter the same (radius ⇠ 15600RS�r) - thus being lalala(not quite a billion?) times brighter as
Sirius itself - this serves as a scaling to show that we could measure that as well - so no problem to do an SN
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2 point correlation:
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2.2 Some basic wave concepts 17

Fig. 2.6. Huygens’ principle applied to gravitational lensing. (a) The distortion of
the wavefront of a plane wave in the region of a massive body, causing a dimple
on the axis, propagation of the dimpled wavefront, and the way in which multiple
images result; (b) an example of the gravitationally distorted image of a quasar in
the near infrared (courtesy of NASA).

wave progresses through the focus of the central region, a cusp develops. The result
of all this is to create arcs and multiple images of a single source, an effect which
has been observed astronomically on several occasion (figure 2.6). Gravitational
lensing has become relevant to the extrasolar planet search (chapter 10), which is
a major incentive for astronomical interferometry. When the lensing mass is very
large, an image broken into distinguishable arcs or dots may be formed as shown in
figure 2.6(b). If the mass is very small, considerably less than that of the Sun, these
patterns are unresolved by atmospherically limited telescopes, but the gravitational
lens effect still causes a larger area of the wavefront to be directed towards the
observer than would be the case if the lensing mass were absent. As a result, a
peak in flux occurring simultaneously at all wavelengths is expected. It can be quite
considerable if the source, observer and lensing mass are well aligned (Paczynski,
1986). Such events, called “microlensing”, have been observed and are monitored
regularly. Moreover, the presence of a second body next to the lensing mass causes
a double peak in intensity (Beaulieu et al. 2006), and from the ratio between the
two, information about the relative masses and separation can be gleaned. This has
led to a new way of looking for extrasolar planetary systems, and several observing
programs of this type are currently being carried out.

2.2.3 Superposition

So far we have discussed individual waves, each having a sinusoidal profile. In fact,
most waves are more complicated than this but fortunately, in a linear medium, the
more complicated waves can always be expressed as a weighted sum of many

Capella a and b

Sirius

Betelgeuse

lensing

Tuesday, May 13, 14



complex visibility of a structured, limbdarkened disk
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complex visibility of a structured, limbdarkened disk
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HBT simulations

Figures 2 through 4 show di↵erent ’setups’ and their according 2 point correlations. Fig 2 shows a uniform disk of 2mas

diameter, figure 3 shows a crudely limb darkened disk of the same size. One can see the subtle di↵erences in the transforms.
Figure 4 shows a close unequal binary of the same brightness that produces more extreme features in the transform - one
can see that intensity interferometry could be a powerful tool to distinguish di↵erent structures without the need for actual
optical resolution. Figure 5 shows the simulation for a setup representative of the Capella a,b binary. See table 2 for our
approximate parameters.

Figure 2: Simulations for a uniform disk of 2mas radius: Top left shows the simulated source, top right shows the visibility
as simulated using a 2d↵t algorithm. The axes of this and the bottom panels are baselines in meters (units of frequency
space u multiplied by the measurement wavelength �). Bottom left shows the visibility squared - the 2 point correlation
term in equation (13), the bottom right shows the simulated imaginary part which is negligible as is expected for point
symmetric sources.

Figure 3: Simulation of a roughly limb darkened disk of 2mas radius: left the simulated source, on the right the squared
visibility.
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(u,v) coverage of one proposed CTA setup

Capella: declination 45°

�1500 �1000 �500 0 500 1000 1500
E-W in meters

�1500

�1000

�500

0

500

1000

1500

S-
N

in
m

et
er

s

�2000 �1000 0 1000 2000
baseline E-W in meters

�2000

�1000

0

1000

2000

ba
se

lin
e

S-
N

in
m

et
er

s

1h

Zurich (47°8’ latitude)

Tuesday, May 13, 14



(u,v) coverage of one proposed CTA setup
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more HBT simulations

close binary
(separations 
of the order

 of mas)

Capella a and b
separation 

around 50mas

Figure 4: Simulations of a close binary of the same brightness (diameters: 1mas and .8mas at a distance of 2.5mas).

Figure 5: Simulations of the Capella a and b binary: around 4 and 3mas in diameter and roughly 50mas apart at a
temperature of 4940K, 5700K respectively (at a distance of 12.9pc)
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3 point correlation

1 Introduction
Imagine a source emitting narrowband but incoherent light (such as an ordinary sodium light) falling on to a
double slit and a subsequent screen. Since the source is incoherent the phase is fluctuating and there is no
consistent phase difference between the two waves emitted at the slits and thus there will be no interference
patterns produced by constructive and destructive superposition visible on the screen, the time averaged
intensities (the complex conjugate products of the incoming electric fields) coming from both slits will just add
up. But due to the random fluctuations of the phases the intensities will fluctuate. Counting individual photons
at photons at two different points on the screen will result in a coincidence rate slightly higher than the Poisson
coincidence rate, the intensity fluctuations are correlated. This additional term is what is called the Hanbury
Brown and Twiss (HBT) effect.

Now consider narrowband chaotic light emitted from a distant thermal source as an infinite 2 dimensional
superposition of sub sources (’slits’). Integrating the amplitude contributions over the new, extended source
amounts to taking the Fourier transform of the intensity or brightness distribution on the sky (Van Cittert
Zernike theorem). The normalized Fourier transform is called the complex visibility that can in principle be
measured at different spatial distances or baselines but measuring visibility directly is very difficult for astro-
nomical sources because it requires maintaining optical quality mirrors over long baselines to sub wavelength
accuracy (VLTI). Alternatively information on the visibility can be obtained by considering the normalized in-
tensity correlation (the probability of coincident detection at two detectors) for two detectors (1 and 2):

C12 = 1+ |V12|2 (1)

This equation is valid over a coherence time which is the time scale on which the phases of incoherent light
fluctuate:

�� ⇠ 1/�� = ���2/c. (2)

Let r be the average count rate for one detector. Over a coherence time �� the two detectors will count
around r correlated events each, thus (r��)2. The time resolution, or counting time of a detector �t will
be much larger than the coherence time �t � ��, so in one counting interval the HBT signal count will be
r2��2(�t/��) = r2���t. Note that the phase information of the electrical field is lost when measuring the
amplitude squared. But the great advantage is that optical parts need to be accurate only to ⌧ c�t.

In the 1950s Hanbury Brown and Twiss implemented these ideas in the first stellar intensity interferometer
that measured the diameter of Sirius and in the 1960s the Narrabri intensity interferometer was built to mea-
sure more stellar diameters (Hanbury Brown et al. (1974a)). At that time so called intensity interferometry
was limited to blue-sensitive counting equipment and has not been attempted for a long while since. The
possibilities of new, faster counters in red and infrared ranges have recently brought intensity interferometry
back into focus and arrays of telescopes such as the proposed Cherencov Telescope Array (CTA) will allow us
to exploit the effect to a greater extent in the years to come, see for example Dravins et al. (2013). Figure 1
shows the brightness distribution of a structured, crudely limbdarkened disk of 1mas radius and the simulated
signal of the HBT effect for different telescope baselines. The bottom right panel emphasizes the possibilities
of new arrays: it shows the (�,�) coverage of one hour observation time for a hypothetical setup of telescopes
proposed by the CTA consortium.

The loss of phase information 1 is the major short coming of intensity interferometry. But it is not a
fundamental short coming because from the theory of quantum optics developed in the 1960s, see Glauber
2006 for a review, phase information can be obtained by using 3 telescopes in concert. Malvimat et al. (2014)
have reviewed the theory of higher order correlations and given an elegant way of estimating the signal to
noise ratios achievable and in this study we will show case the feasibility of detecting 3 point HBT.

The normalized three point coincidence is:

C123 = 1+ |V12|2 + |V23|2 + |V31|2 + 2Re[V12V23V31] (3)

The last term is well known in radio astronomy as the bispectrum.
what does it look like ? can we do something with it ?
In section ...
Different algorithms on the market to recover phase from bispectrum, see for example ?. closure phase

allows to discard different atmospheric and other influences on phase of single detector and leaves phases for
baselines...

main conclusions:
3pt feasible with CTA type mirrors
Betelgeuse cannot use 10 m mirror, need to subdivide that.
minor: can do simple HBT with amateur setup
nearby stars -> further away scaling relations
resolve microlensing
(SN and maser examples or at least mention these)

SN - let’s approximate a super nova by putting Sirius in the LMC (at 41100 pc) and keeping the temperature
and angular diameter the same (radius ⇠ 15600RS�r) - thus being lalala(not quite a billion?) times brighter as
Sirius itself - this serves as a scaling to show that we could measure that as well - so no problem to do an SN

2

We can see that the coincidence rate contains the normalized visibilities and the last term is twice the real
part of the so called bispectrum which is often used to correct for atmospheric influences and gives more
information about asymmetry of sources known as phase closure [Jennison (1958)]: Let us write each complex
element in terms of amplitude and phase: V�j = |V�j|e�(��j+�j���), where ��j is just the complex phase of the
Fourier transform at the baseline IJ and �� denotes the phase shift introduced by atmosphere, projection effects
by the source’s position in the sky, and equipment induced phase errors. Thus, the phase shifts introduced by
the individual detectors will vanish in the triple product:

V12V23V31 = |V12||V23||V31|e�(�12+(�2��1)+�23+(�3��2)+�31+(�1��3))

= |V12||V23||V31|e�(�12+�23+�31)
(35)

The phase of the triple product is called the closure phase. It can be shown that the bispectrum is real for
all point symmetric sources such as an equal binary, the closure phase adds up to 0 or ±� and jumps where
the fringe visibility goes to zero. By measuring the three point coincidence we can thus recover some phase
information, of course, depending on (�,�) coverage possible.

F.4 3 detector signal to noise
Following

PROBABLY USELESS: only the completely looped terms, so the actual higher order signal in the detection,
not the full coincidence signal to noise... To estimate the SNR for the (N � 1)! triple products for N detectors
we find the HBT coincidence rate in one counting interval to be

(N� 1)! (r��)N(��/�t), (36)

while the noise will be the square root of the rates at the individual detectors (r�t)N and the coincidence rate
(36), so we find a signal to noise ratio per counting time of:

SNR =
(N� 1)! (r��)N(�t/��)1�N

(r�t)N/2
p
(N� 1)! (��/�t)N�1 + 1

=
(N� 1)! (r��)N/2(��/�t)N/2�1
p
(N� 1)! (��/�t)N�1 + 1

⇠ (N� 1)! (r��)N/2(��/�t)N/2�1
(37)

LALALALALALA last two terms in equation (33) we can use the twice the HBT coincidence rate of the 3 detector
combinations in one counting interval:

2(r��)3(�t/��), (38)

while the noise will be the square root of the rates at the individual detectors (r�t)N and the coincidence rate
(38), so we find a signal to noise ratio per counting time of:

SNR =
2 (r��)3/2(��/�t)1/2
p
2 (��/�t)2 + 1

(39)

which we will approximate with:
SNR ⇠ (r��)3/2(��/�t)1/2. (40)

23

3 point correlation function:

bispectrum:
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3 point correlation for a close binary
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theoretical bispectrum phase in a close binary
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a comparison
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find the code and examples
www.physik.uzh.ch/~tina/3HBT
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use two off the shelf single photon avalanche diode counters
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black body source

number density for photons:

in terms of bandwidth:
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Figure 27: the classical way of understanding an intensity interferometer: Light from two distinct source points
(A, B) reaches detectors (PD1, PD2) generating currents �1 and �2 proportional to the incident intensities. The
signals are recorded and an AC coupling is used to filter out the fluctuations which are then correlated by
multiplying and integrating. A correlation will be detected if light from A reaches PD1 and light from B reaches
PD2 inside a coherence time ��, light from B reaching PD1 and light from A reaching PD2 respectively. (Delays
are used for practical reasons to adjust for cable length or projection to/from the observation plane that’s not
true I think!!)

A rather elegant way to give a rough estimate for the count rate can be made understanding stars as black
bodies as proposed by Prasenjit Saha: The number density for photons in thermal equilibrium is:

n(E)dE =
8�

(hc)3
E2dE

exp [E/kBT]� 1
(29)

Rewriting this in terms of bandwidth �� and neglecting the second polarization state (since we just want to
give a rough estimate):

n(�)�� =
4�

�4
��

exp [hc/�kBT]� 1
(30)

We can now estimate the rate received in a coherence time for a detection area A by multiplying with �� and
Ac�/4�, where � is the solid angle of the source as seen from earth: � = 2�(1 � cos (�/2)) = 4� sin2 (�/4) '
�(�/2)2 with � being the angular diameter of the source, which will, coincidentally, give us the signal to noise
estimate for a counting time �t:

SNR = r�� = n(�)
Ac�

4�
�� =

Ac�

�4
��

exp [hc/�kBT]� 1
�� =

A�

�2(exp [hc/�kBT]� 1)
, (31)

which is independent of the bandwidth. Note that the the area A is the geometric mean of the collection area
of two telescopes.
Using black body toy models similar to Sirius, Arturus, Betelgeuse and the Capella a and b binary, given in
table 2, we estimate the SNR per unit area for one counting time �t at different wavelengths in figure 26,
thereby reproducing figure 1b in Malvimat et al. (2014).

To estimate the signal to noise ratio over an observation time To, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is
a reasonable assumption, since �t � ��. Thus, uncorrelated shot noise dominates and the SNR adds in
quadrature. Let n = To/�t:

SNRTo =
p
nr�� =

»
To
�t

A�

�2(exp [hc/�kBT]� 1)
, (32)

F.3 3 Detectors

For three detectors equation (19) yields Malvimat et al. (2014):

G(3)(�1,�2,�3,�3,�2,�1) = G(1)(�1,�1)G(1)(�2,�2)G(1)(�3,�3) +G(1)(�1,�1)G(1)(�2,�3)G(1)(�3,�2)

+G(1)(�2,�2)G(1)(�3,�1)G(1)(�1,�3) +G(1)(�3,�3)G(1)(�1,�2)G(1)(�2,�1)

+G(1)(�1,�2)G(1)(�2,�3)G(1)(�3,�1) +G(1)(�1,�3)G(1)(�3,�2)G(1)(�2,�1)

(33)

21
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We can now estimate the rate received in a coherence time for a detection area A by multiplying with �� and
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��
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, (31)

which is independent of the bandwidth. Note that the the area A is the geometric mean of the collection area
of two telescopes.
Using black body toy models similar to Sirius, Arturus, Betelgeuse and the Capella a and b binary, given in
table 2, we estimate the SNR per unit area for one counting time �t at different wavelengths in figure 26,
thereby reproducing figure 1b in Malvimat et al. (2014).

To estimate the signal to noise ratio over an observation time To, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is
a reasonable assumption, since �t � ��. Thus, uncorrelated shot noise dominates and the SNR adds in
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For three detectors equation (19) yields Malvimat et al. (2014):
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(30)

We can now estimate the rate received in a coherence time for a detection area A by multiplying with �� and
Ac�/4�, where � is the solid angle of the source as seen from earth: � = 2�(1 � cos (�/2)) = 4� sin2 (�/4) '
�(�/2)2 with � being the angular diameter of the source, which will, coincidentally, give us the signal to noise
estimate for a counting time �t:

SNR = r�� = n(�)
Ac�

4�
�� =

Ac�

�4
��

exp [hc/�kBT]� 1
�� =

A�

�2(exp [hc/�kBT]� 1)
, (31)

which is independent of the bandwidth. Note that the the area A is the geometric mean of the collection area
of two telescopes.
Using black body toy models similar to Sirius, Arturus, Betelgeuse and the Capella a and b binary, given in
table 2, we estimate the SNR per unit area for one counting time �t at different wavelengths in figure 26,
thereby reproducing figure 1b in Malvimat et al. (2014).

To estimate the signal to noise ratio over an observation time To, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is
a reasonable assumption, since �t � ��. Thus, uncorrelated shot noise dominates and the SNR adds in
quadrature. Let n = To/�t:

SNRTo =
p
nr�� =

»
To
�t

A�

�2(exp [hc/�kBT]� 1)
, (32)

F.3 3 Detectors

For three detectors equation (19) yields Malvimat et al. (2014):

G(3)(�1,�2,�3,�3,�2,�1) = G(1)(�1,�1)G(1)(�2,�2)G(1)(�3,�3) +G(1)(�1,�1)G(1)(�2,�3)G(1)(�3,�2)

+G(1)(�2,�2)G(1)(�3,�1)G(1)(�1,�3) +G(1)(�3,�3)G(1)(�1,�2)G(1)(�2,�1)

+G(1)(�1,�2)G(1)(�2,�3)G(1)(�3,�1) +G(1)(�1,�3)G(1)(�3,�2)G(1)(�2,�1)

(33)
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Figure 27: the classical way of understanding an intensity interferometer: Light from two distinct source points
(A, B) reaches detectors (PD1, PD2) generating currents �1 and �2 proportional to the incident intensities. The
signals are recorded and an AC coupling is used to filter out the fluctuations which are then correlated by
multiplying and integrating. A correlation will be detected if light from A reaches PD1 and light from B reaches
PD2 inside a coherence time ��, light from B reaching PD1 and light from A reaching PD2 respectively. (Delays
are used for practical reasons to adjust for cable length or projection to/from the observation plane that’s not
true I think!!)

A rather elegant way to give a rough estimate for the count rate can be made understanding stars as black
bodies as proposed by Prasenjit Saha: The number density for photons in thermal equilibrium is:

n(E)dE =
8�

(hc)3
E2dE

exp [E/kBT]� 1
(29)

Rewriting this in terms of bandwidth �� and neglecting the second polarization state (since we just want to
give a rough estimate):

n(�)�� =
4�

�4
��

exp [hc/�kBT]� 1
(30)

We can now estimate the rate received in a coherence time for a detection area A by multiplying with �� and
Ac�/4�, where � is the solid angle of the source as seen from earth: � = 2�(1 � cos (�/2)) = 4� sin2 (�/4) '
�(�/2)2 with � being the angular diameter of the source, which will, coincidentally, give us the signal to noise
estimate for a counting time �t:

SNR = r�� = n(�)
Ac�

4�
�� =

2Ac�

�4
��

exp [hc/�kBT]� 1
�� =

2A�

�2(exp [hc/�kBT]� 1)
, (31)

which is independent of the bandwidth. Note that the the area A is the geometric mean of the collection area
of two telescopes.
Using black body toy models similar to Sirius, Arturus, Betelgeuse and the Capella a and b binary, given in
table 2, we estimate the SNR per unit area for one counting time �t at different wavelengths in figure 26,
thereby reproducing figure 1b in Malvimat et al. (2014).

To estimate the signal to noise ratio over an observation time To, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is
a reasonable assumption, since �t � ��. Thus, uncorrelated shot noise dominates and the SNR adds in
quadrature. Let n = To/�t:

SNRTo =
p
nr�� =

»
To
�t

A�

�2(exp [hc/�kBT]� 1)
, (32)

F.3 3 Detectors

For three detectors equation (19) yields Malvimat et al. (2014):

G(3)(�1,�2,�3,�3,�2,�1) = G(1)(�1,�1)G(1)(�2,�2)G(1)(�3,�3) +G(1)(�1,�1)G(1)(�2,�3)G(1)(�3,�2)

+G(1)(�2,�2)G(1)(�3,�1)G(1)(�1,�3) +G(1)(�3,�3)G(1)(�1,�2)G(1)(�2,�1)

+G(1)(�1,�2)G(1)(�2,�3)G(1)(�3,�1) +G(1)(�1,�3)G(1)(�3,�2)G(1)(�2,�1)

(33)
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Figure 27: the classical way of understanding an intensity interferometer: Light from two distinct source points
(A, B) reaches detectors (PD1, PD2) generating currents �1 and �2 proportional to the incident intensities. The
signals are recorded and an AC coupling is used to filter out the fluctuations which are then correlated by
multiplying and integrating. A correlation will be detected if light from A reaches PD1 and light from B reaches
PD2 inside a coherence time ��, light from B reaching PD1 and light from A reaching PD2 respectively. (Delays
are used for practical reasons to adjust for cable length or projection to/from the observation plane that’s not
true I think!!)

A rather elegant way to give a rough estimate for the count rate can be made understanding stars as black
bodies as proposed by Prasenjit Saha: The number density for photons in thermal equilibrium is:

n(E)dE =
8�

(hc)3
E2dE

exp [E/kBT]� 1
(29)

Rewriting this in terms of bandwidth �� and neglecting the second polarization state (since we just want to
give a rough estimate):

n(�)�� =
8�

�4
��

exp [hc/�kBT]� 1
(30)

We can now estimate the rate received in a coherence time for a detection area A by multiplying with �� and
Ac�/4�, where � is the solid angle of the source as seen from earth: � = 2�(1 � cos (�/2)) = 4� sin2 (�/4) '
�(�/2)2 with � being the angular diameter of the source, which will, coincidentally, give us the signal to noise
estimate for a counting time �t:

SNR = r�� = n(�)
Ac�

4�
�� =

2Ac�

�4
��

exp [hc/�kBT]� 1
�� =

2A�

�2(exp [hc/�kBT]� 1)
, (31)

which is independent of the bandwidth. Note that the the area A is the geometric mean of the collection area
of two telescopes.
Using black body toy models similar to Sirius, Arturus, Betelgeuse and the Capella a and b binary, given in
table 2, we estimate the SNR per unit area for one counting time �t at different wavelengths in figure 26,
thereby reproducing figure 1b in Malvimat et al. (2014).

To estimate the signal to noise ratio over an observation time To, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is
a reasonable assumption, since �t � ��. Thus, uncorrelated shot noise dominates and the SNR adds in
quadrature. Let n = To/�t:

SNRTo =
p
nr�� =

»
To
�t

A�

�2(exp [hc/�kBT]� 1)
, (32)

F.3 3 Detectors

For three detectors equation (19) yields Malvimat et al. (2014):

G(3)(�1,�2,�3,�3,�2,�1) = G(1)(�1,�1)G(1)(�2,�2)G(1)(�3,�3) +G(1)(�1,�1)G(1)(�2,�3)G(1)(�3,�2)

+G(1)(�2,�2)G(1)(�3,�1)G(1)(�1,�3) +G(1)(�3,�3)G(1)(�1,�2)G(1)(�2,�1)

+G(1)(�1,�2)G(1)(�2,�3)G(1)(�3,�1) +G(1)(�1,�3)G(1)(�3,�2)G(1)(�2,�1)

(33)
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coherence time:

1 Introduction
Imagine a source emitting narrowband but incoherent light (such as an ordinary sodium light) falling on to a
double slit and a subsequent screen. Since the source is incoherent the phase is fluctuating and there is no
consistent phase difference between the two waves emitted at the slits and thus there will be no interference
patterns produced by constructive and destructive superposition visible on the screen, the time averaged
intensities (the complex conjugate products of the incoming electric fields) coming from both slits will just add
up. But due to the random fluctuations of the phases the intensities will fluctuate. Counting individual photons
at photons at two different points on the screen will result in a coincidence rate slightly higher than the Poisson
coincidence rate, the intensity fluctuations are correlated. This additional term is what is called the Hanbury
Brown and Twiss (HBT) effect.

Now consider narrowband chaotic light emitted from a distant thermal source as an infinite 2 dimensional
superposition of sub sources (’slits’). Integrating the amplitude contributions over the new, extended source
amounts to taking the Fourier transform of the intensity or brightness distribution on the sky (Van Cittert
Zernike theorem). The normalized Fourier transform is called the complex visibility that can in principle be
measured at different spatial distances or baselines but measuring visibility directly is very difficult for astro-
nomical sources because it requires maintaining optical quality mirrors over long baselines to sub wavelength
accuracy (VLTI). Alternatively information on the visibility can be obtained by considering the normalized in-
tensity correlation (the probability of coincident detection at two detectors) for two detectors (1 and 2):

C12 = 1+ |V12|2 (1)

This equation is valid over a coherence time which is the time scale on which the phases of incoherent light
fluctuate:

�� ⇠ 1/�� = �2/c��. (2)

Let r be the average count rate for one detector. Over a coherence time �� the two detectors will count
around r correlated events each, thus (r��)2. The time resolution, or counting time of a detector �t will
be much larger than the coherence time �t � ��, so in one counting interval the HBT signal count will be
r2��2(�t/��) = r2���t. Note that the phase information of the electrical field is lost when measuring the
amplitude squared. But the great advantage is that optical parts need to be accurate only to ⌧ c�t.

In the 1950s Hanbury Brown and Twiss implemented these ideas in the first stellar intensity interferometer
that measured the diameter of Sirius and in the 1960s the Narrabri intensity interferometer was built to mea-
sure more stellar diameters (Hanbury Brown et al. (1974)). At that time so called intensity interferometry was
limited to blue-sensitive counting equipment and has not been attempted for a long while since. The possibili-
ties of new, faster counters in red and infrared ranges have recently brought intensity interferometry back into
focus and arrays of telescopes such as the proposed Cherencov Telescope Array (CTA) will allow us to exploit
the effect to a greater extent in the years to come, see for example Dravins et al. (2013). Figure 1 shows the
brightness distribution of a structured, crudely limbdarkened disk of 1mas radius and the simulated signal of
the HBT effect for different telescope baselines. Different algorithms exist to recover phase from bispectrum,
see for example Kang et al. (1991).

The loss of phase information 1 is the major short coming of intensity interferometry. But it is not a
fundamental short coming because from the theory of quantum optics developed in the 1960s, see Glauber
(2006) for a review, phase information can be obtained by using 3 telescopes in concert. The normalized three
point correlation is:

C123 = 1+ |V12|2 + |V23|2 + |V31|2 + 2Re[V12V23V31], (3)

the last term being well known in radio astronomy as the bispectrum, as the phase of this term, the so called
closure phase allows to discard different local atmospheric and other influences on phase measurements for
the single detectors in a 3 antenna setup. Malvimat et al. (2014) have reviewed the theory of higher order
correlations and given an elegant way of estimating the signal to noise ratios (SNR) achievable and in this study
we will show case the feasibility of detecting 3 point HBT. In the following sections we will simulate signals for
2 and 3 point correlation measurements of different, simple sources and make some estimates about possible
achievable signal to noise ratios.

1.1 Results
In the next chapter we show simulations of the complex visibilities and resulting correlation signals, see for
example figure 1 shows a simulation of a structured disk. Comparing that to the other figures in chapter 2 we
can immediately see that adequate (�,�) coverage allows to see differences in shape and structure. Chapter
2.1 might be of special interest, we plot the 3 point correlation signals (specifically the bispectra) for a given
baseline for different sources. Movies of these simulations for a range of different baselines to slide through
can be found at www.itp.uzh.ch/⇠tina/movies/, for parameters and algorithms used see table 4. 3ddifffat.mov
in particular shows the difference between a plain and a structured limb darkened disk.

We show in chapter 4 that for 2 point correlation the signal to noise ratio is independent of bandwidth,
meaning that decreasing bandwidth resulting in decreasing count rates will not change the signal to noise
ratio for HBT detection. This provides a major advantage, making it possible to adapt the measurement setup
to different sources on the sky. Furthermore we show that the observation time goes with the inverse squared
of the collection area. With larger telescopes such as H.E.S.S. (12m diameter dishes) and the planned CTA (7m,

2

Tuesday, May 13, 14



approximate rates using a black body toy model

4 Signal to Noise Ratios

4.1 2 Detectors

Remember that the HBT signal count for two detectors is r2���t at a time resolution of �t. Assuming that
random coincidences will be around the the average count rate r, the product of shot noise over one interval
of the individual detectors amounts to (r�t)2 which corresponds to the first term of equation (1). The signal to
noise ratio of the correlation signal is thus:

SNR ⇠
r2���t

(r�t)2
= r��, (6)

which is exactly the estimated HBT count rate!
Evaluating the signal to noise ratio over an observation time T, we assume that the intensity fluctuations

measured in one counting time �t are not correlated to the ones measured in the next interval, which is a
reasonable assumption, since at relevant wavelengths �t � �� (⇠ 10�12). Thus, uncorrelated, Gaussian noise
dominates and the SNR adds in quadrature. We can now find the required observation time for a required
signal to noise ratio using equation (5):

T(SNR) = SNR2�t
h �A�

�2(exp [hc/�kBT]� 1)
i�2

(7)

Figure 16 shows the the observation times necessary to reach an SNR of 1 using two Pico Quant single-
photon avalanche detectors, see figure 16 for the ID100 series. See table 2 for signal to noise ratios at
maximum efficiency wavelength for the two detectors mentioned above and observation times necessary to
reach an SNR of 1 with a perfect photon counter.

Figure 16: observation time estimates to reach an HBT SNR of 1 for dishes with diameters of .1m (scales on
the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see table 2 for
color code.

source temperature diameter color SNRpc at 550 nm SNR�d� at 500 nm Tobs for an SNR of 1
[K] [arcsec] [m�2] [m�2] at 100% efficiency [s]

Sirius 9940 .006 blue 8.3 10�5 5.4 10�5 .002
Betelgeuse 3500 .04 magenta 2.7 10�5 1.1 10�5 .02
Capella a 5700 .003 cyan 1.3 10�5 7 10�6 .07
Capella b 4940 .004 1.2 10�5 6 10�6 .09

Table 2: approximated star parameters and SNR estimates for an effective telescope area of 1m2 using the
respective efficiencies at optimal wavelengths of the two discussed detectors (table 1). Additionally we show
the approximate observation times necessary to achieve a signal to noise ratio of 1 using perfect photon
counters with an estimated time resolution of 50ps
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Figure 12: quantum efficiency 7th order polynomial fit
for PicoQuant PDM series from figure on the manufac-
turer’s data sheet1 using the WebPlotDigitizer2 by Ankit
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Figure 13: quantum efficiency 7th order polynomial fit
for IDQuantique ID100 series3

As shown by Malvimat et al. (2014) the HBT count rates for stars can estimated using a black body toy
model, their equation (28). Multiplying the rate estimate with a quantum efficiency � for the two required
photon counters results in the following HBT rate per coherence time:

�r�� =
�A�

�2(exp [hc/�kBT]� 1)
, (5)

where � is the solid angle of the source, A the geometrical mean of the collection areas of the two detectors, �
the measurement wavelength, and T the temperature of the assumed black body source. Off the shelf photon
counters such as the Pico Quant PDM series[1] or the ID100 series of IDQuantique[3] (see best case parameters
in table 1) can help to get a feeling for possible, easily achievable count rates. Todays possibilities allow for
reasonable quantum efficiencies at high time resolutions in the middle of the visible spectrum. Table 1 show
some of the important specifications, figures 12 and 13 show fits to quantum efficiency measurements by
the manufacturers. Zooming in on the wavelength region that is covered by these detectors, figures 14 and
15 show the expected HBT rates for different stars described in table 2 when using narrowband filters with
�� = 1nm.

detector max efficiency wavelength of max efficiency time resolution �t dead time
Picoquant 49 % 550 nm 50 ps 80 ns
PDM series1
IDQuantique 35 % 500 nm 40 ps 45 ns
ID100 series3

Table 1: some best case specifications of the two mentioned single photon counters

1http://www.picoquant.com/images/uploads/downloads/pdm_series.pdf
2http://arohatgi.info/WebPlotDigitizer/app/
3http://www.idquantique.com/images/stories/PDF/id100-single-photon-detector/id100-specs.pdf
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Figure 14: expected HBT rates per coherence time �� using two Picoquant PDM series photon counters after
filtering to a bandwidth of �� = 1nm for different stars using the quantum efficiency estimates given in figure
12. The plot shows equation (5) evaluated for Sirius (blue), Betelqeuse (magenta), and Capella a (cyan) at the
approximate parameters given in table 2.

Figure 15: expected HBT rates per coherence time for measurements using the IDQuantique ID100 series,
see figure 13 for the respective efficiency fit.
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Figure 14: expected HBT rates per coherence time �� using two Picoquant PDM series photon counters after
filtering to a bandwidth of �� = 1nm for different stars using the quantum efficiency estimates given in figure
12. The plot shows equation (5) evaluated for Sirius (blue), Betelqeuse (magenta), and Capella a (cyan) at the
approximate parameters given in table 2.

Figure 15: expected HBT rates per coherence time for measurements using the IDQuantique ID100 series,
see figure 13 for the respective efficiency fit.
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signal to noise ratio and observation times

we are now talking about geometric means of the collection area of two 
telescopes and their photon counters’ efficiencies.

the signal to noise ratio for an integration time:

necessary observation time: 

4 Signal to Noise Ratios

4.1 2 Detectors
Remember that the HBT signal count for two detectors is r2���t at a time resolution of �t. Assuming that
random coincidences will be around the the average count rate r, the product of shot noise over one interval
of the individual detectors amounts to (r�t)2 which corresponds to the first term of equation (1). The signal to
noise ratio of the correlation signal is thus:

SNR ⇠
r2���t

r�t
= r��, (6)

which is exactly the estimated HBT count rate!
Evaluating the signal to noise ratio over an observation time T, we assume that the intensity fluctuations

measured in one counting time �t are not correlated to the ones measured in the next interval, which is a
reasonable assumption, since at relevant wavelengths �t � �� (⇠ 10�12). Thus, uncorrelated, Gaussian noise
dominates and the SNR adds in quadrature. We can now find the required observation time for a required
signal to noise ratio using equation (5):

T(SNR) = SNR2�t
h �A�

�2(exp [hc/�kBT]� 1)
i�2

(7)

Figure 16 shows the the observation times necessary to reach an SNR of 1 using two Pico Quant single-
photon avalanche detectors, see figure 16 for the ID100 series. See table 2 for signal to noise ratios at
maximum efficiency wavelength for the two detectors mentioned above and observation times necessary to
reach an SNR of 1 with a perfect photon counter.

Figure 16: observation time estimates in seconds to reach an HBT SNR of 1 for dishes with diameters of .1m
(scales on the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see
table 2 for color code.

source temperature diameter color SNRpc at 550 nm SNR�d� at 500 nm Tobs for an SNR of 1
[K] [arcsec] [m�2] [m�2] at 100% efficiency [s]

Sirius 9940 .006 blue 8.3 10�5 5.4 10�5 .002
Betelgeuse 3500 .04 magenta 2.7 10�5 1.1 10�5 .02
Capella a 5700 .003 cyan 1.3 10�5 7 10�6 .07
Capella b 4940 .004 1.2 10�5 6 10�6 .09

Table 2: approximated star parameters and SNR estimates for an effective telescope area of 1m2 using the
respective efficiencies at optimal wavelengths of the two discussed detectors (table 1). Additionally we show
the approximate observation times necessary to achieve a signal to noise ratio of 1 using perfect photon
counters with an estimated time resolution of 50ps
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detector max efficiency wavelength of max efficiency time resolution �t dead time

Picoquant 49 % 550 nm 50 ps 80 ns
PDM series1

IDQuantique 35 % 500 nm 40 ps 45 ns
ID100 series2

Table 1. Some best case specifications of the two mentioned single photon counters.

Figure 5. Upper panel: expected count rates per coherence time �� using two Picoquant PDM series photon counters after
filtering to a bandwidth of �� = 1nm for different stars using the quantum efficiency estimates given in the left panel of figure
4. The plot shows equation (4) evaluated for Sirius (blue), Betelqeuse (magenta), and Capella a (cyan) at the approximate
parameters given in table 2. The lower panel shows the expected count rates per coherence time for measurements using the
IDQuantique ID100 series.

3.2 Signal to Noise Ratio for 2 Detectors

Over a coherence time �� there will be |V12|2(�r��)2 coincidences. The time resolution, or counting time of a
detector �t will be much larger than the coherence time, �t� ��, so in one counting interval there will be �t/��
such contributions, giving |V12|2(�r)2���t. Meanwhile there will be (�r�t)2 random coincidences corresponding
to the first term of equation (3), giving �r�t of noise, so the signal to noise ratio in �t becomes:

SNR(�t) = |V12|2�r��, (5)

Note that the signal to noise ratio is independent on the bandwidth: decreasing bandwidth results in lower rates
but will not change the signal to noise ratio.

Evaluating the signal to noise ratio over an observation time Tobs, we assume that the intensity fluctuations
measured in one counting time �t are not correlated to the ones measured in the next interval, which is a
reasonable assumption, since at relevant wavelengths �t � �� (⇠ 10�12). Thus, uncorrelated, Gaussian noise
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Feasibility of observing Hanbury Brown and Twiss phase 7

Figure 6. Upper panel: observation time estimates in seconds to reach an HBT SNR of 1 for dishes with diameters of .1m
(scales on the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see table 2 for color
code. The lower panel shows observation time estimates using ID100 detectors by IDQuantique.

dominates and the SNR adds in quadrature:

SNR = SNR(�t)
p
Tobs/�t (6)

We can now find the required observation time for a required signal to noise ratio using equation (4):

Tobs(SNR) =
SNR2

|V12|4
�t
h �A�

�2(exp [hc/�kBT]� 1)
i�2

(7)

Figure 6 shows the the observation times necessary for some example cases to reach an SNR of 1 for |V12|2 = 1.
Clearly detector technology has improved greatly in the past half century, observing Sirius Hanbury Brown and
Twiss needed a few minutes to reach a signal to noise ratio of 1 using a 5-foot searchlight mirrors. Now the same
could be done using 10cm diameter mirrors.

3.3 Signal to Noise Ratio for 3 Detectors

Over a coherence time �� there will be V123(�r��)3 excess coincidences, where V123 is the last term in equation
(3). So over a time �t there will be V123(�r)3��2�t signal coincidences. Meanwhile there will be (�r�t)3/2 of
noise, hence the signal to noise ratio is:

SNR3(�t) ⇠ V123(�r��)3/2(��/�t)1/2, (8)
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Figure 6. Upper panel: observation time estimates in seconds to reach an HBT SNR of 1 for dishes with diameters of .1m
(scales on the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see table 2 for color
code. The lower panel shows observation time estimates using ID100 detectors by IDQuantique.
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Figure 6 shows the the observation times necessary for some example cases to reach an SNR of 1 for |V12|2 = 1.
Clearly detector technology has improved greatly in the past half century, observing Sirius Hanbury Brown and
Twiss needed a few minutes to reach a signal to noise ratio of 1 using a 5-foot searchlight mirrors. Now the same
could be done using 10cm diameter mirrors.
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Over a coherence time �� there will be V123(�r��)3 excess coincidences, where V123 is the last term in equation
(3). So over a time �t there will be V123(�r)3��2�t signal coincidences. Meanwhile there will be (�r�t)3/2 of
noise, hence the signal to noise ratio is:

SNR3(�t) ⇠ V123(�r��)3/2(��/�t)1/2, (8)
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1 Introduction
Imagine a source emitting narrowband but incoherent light (such as an ordinary sodium light) falling on to a
double slit and a subsequent screen. Since the source is incoherent the phase is fluctuating and there is no
consistent phase difference between the two waves emitted at the slits and thus there will be no interference
patterns produced by constructive and destructive superposition visible on the screen, the time averaged
intensities (the complex conjugate products of the incoming electric fields) coming from both slits will just add
up. But due to the random fluctuations of the phases the intensities will fluctuate. Counting individual photons
at photons at two different points on the screen will result in a coincidence rate slightly higher than the Poisson
coincidence rate, the intensity fluctuations are correlated. This additional term is what is called the Hanbury
Brown and Twiss (HBT) effect.

Now consider narrowband chaotic light emitted from a distant thermal source as an infinite 2 dimensional
superposition of sub sources (’slits’). Integrating the amplitude contributions over the new, extended source
amounts to taking the Fourier transform of the intensity or brightness distribution on the sky (Van Cittert
Zernike theorem). The normalized Fourier transform is called the complex visibility that can in principle be
measured at different spatial distances or baselines but measuring visibility directly is very difficult for astro-
nomical sources because it requires maintaining optical quality mirrors over long baselines to sub wavelength
accuracy (VLTI). Alternatively information on the visibility can be obtained by considering the normalized in-
tensity correlation (the probability of coincident detection at two detectors) for two detectors (1 and 2):

C12 = 1+ |V12|2 (1)

This equation is valid over a coherence time which is the time scale on which the phases of incoherent light
fluctuate:

�� ⇠ 1/�� = ���2/c. (2)

Let r be the average count rate for one detector. Over a coherence time �� the two detectors will count
around r correlated events each, thus (r��)2. The time resolution, or counting time of a detector �t will
be much larger than the coherence time �t � ��, so in one counting interval the HBT signal count will be
r2��2(�t/��) = r2���t. Note that the phase information of the electrical field is lost when measuring the
amplitude squared. But the great advantage is that optical parts need to be accurate only to ⌧ c�t.

In the 1950s Hanbury Brown and Twiss implemented these ideas in the first stellar intensity interferometer
that measured the diameter of Sirius and in the 1960s the Narrabri intensity interferometer was built to mea-
sure more stellar diameters (Hanbury Brown et al. (1974a)). At that time so called intensity interferometry
was limited to blue-sensitive counting equipment and has not been attempted for a long while since. The
possibilities of new, faster counters in red and infrared ranges have recently brought intensity interferometry
back into focus and arrays of telescopes such as the proposed Cherencov Telescope Array (CTA) will allow us
to exploit the effect to a greater extent in the years to come, see for example Dravins et al. (2013). Figure 1
shows the brightness distribution of a structured, crudely limbdarkened disk of 1mas radius and the simulated
signal of the HBT effect for different telescope baselines. The bottom right panel emphasizes the possibilities
of new arrays: it shows the (�,�) coverage of one hour observation time for a hypothetical setup of telescopes
proposed by the CTA consortium.

The loss of phase information 1 is the major short coming of intensity interferometry. But it is not a
fundamental short coming because from the theory of quantum optics developed in the 1960s, see Glauber
2006 for a review, phase information can be obtained by using 3 telescopes in concert. Malvimat et al. (2014)
have reviewed the theory of higher order correlations and given an elegant way of estimating the signal to
noise ratios achievable and in this study we will show case the feasibility of detecting 3 point HBT.

The normalized three point coincidence is:

C123 = 1+ |V12|2 + |V23|2 + |V31|2 + 2Re[V12V23V31] (3)

The last term is well known in radio astronomy as the bispectrum.
what does it look like ? can we do something with it ?
In section ...
Different algorithms on the market to recover phase from bispectrum, see for example ?. closure phase

allows to discard different atmospheric and other influences on phase of single detector and leaves phases for
baselines...

main conclusions:
3pt feasible with CTA type mirrors
Betelgeuse cannot use 10 m mirror, need to subdivide that.
minor: can do simple HBT with amateur setup
nearby stars -> further away scaling relations
resolve microlensing
(SN and maser examples or at least mention these)

SN - let’s approximate a super nova by putting Sirius in the LMC (at 41100 pc) and keeping the temperature
and angular diameter the same (radius ⇠ 15600RS�r) - thus being lalala(not quite a billion?) times brighter as
Sirius itself - this serves as a scaling to show that we could measure that as well - so no problem to do an SN

2

2 point correlation:
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4 Signal to Noise Ratios

4.1 2 Detectors
Remember that the HBT signal count for two detectors is r2���t at a time resolution of �t. Assuming that
random coincidences will be around the the average count rate r, the product of shot noise over one interval
of the individual detectors amounts to (r�t)2 which corresponds to the first term of equation (1). The signal to
noise ratio of the correlation signal is thus:

SNR ⇠
r2���t

(r�t)2
= r��, (6)

which is exactly the estimated HBT count rate!
Evaluating the signal to noise ratio over an observation time T, we assume that the intensity fluctuations

measured in one counting time �t are not correlated to the ones measured in the next interval, which is a
reasonable assumption, since at relevant wavelengths �t � �� (⇠ 10�12). Thus, uncorrelated, Gaussian noise
dominates and the SNR adds in quadrature. We can now find the required observation time for a required
signal to noise ratio using equation (5):

T(SNR) = SNR2�t
h �A�

�2(exp [hc/�kBT]� 1)
i�2

(7)

Figure 16 shows the the observation times necessary to reach an SNR of 1 using two Pico Quant single-
photon avalanche detectors, see figure 16 for the ID100 series. See table 2 for signal to noise ratios at
maximum efficiency wavelength for the two detectors mentioned above and observation times necessary to
reach an SNR of 1 with a perfect photon counter.

Figure 16: observation time estimates in seconds to reach an HBT SNR of 1 for dishes with diameters of .1m
(scales on the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see
table 2 for color code.

source temperature diameter color SNRpc at 550 nm SNR�d� at 500 nm Tobs for an SNR of 1
[K] [arcsec] [m�2] [m�2] at 100% efficiency [s]

Sirius 9940 .006 blue 8.3 10�5 5.4 10�5 .002
Betelgeuse 3500 .04 magenta 2.7 10�5 1.1 10�5 .02
Capella a 5700 .003 cyan 1.3 10�5 7 10�6 .07
Capella b 4940 .004 1.2 10�5 6 10�6 .09

Table 2: approximated star parameters and SNR estimates for an effective telescope area of 1m2 using the
respective efficiencies at optimal wavelengths of the two discussed detectors (table 1). Additionally we show
the approximate observation times necessary to achieve a signal to noise ratio of 1 using perfect photon
counters with an estimated time resolution of 50ps

10

Figure 18: observation time estimates to reach an HBT SNR of 1 for dishes with diameters of .1m (scales on
the left) and 10m (scales on the right) using ID100 detectors by IDQuantique.

Figure 19: observation time estimates to reach a 3 point SNR of 1 for dishes with diameters of .1m (scales on
the left) and 10m (scales on the right) using ID100.

5 THE END

12

HBT observation times for SNR = 1

Picoquant PDM series

IDQuantique ID100

Capella a

Betelgeuse

Sirius
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necessary observation time:

signal to noise ratio and observation times
for 3 point correlation

this is where bandwidth comes in to haunt us.

the signal to noise ratio for an integration time:

Feasibility of observing Hanbury Brown and Twiss phase 7

Figure 6. Upper panel: observation time estimates in seconds to reach an HBT SNR of 1 for dishes with diameters of .1m
(scales on the left) and 10m (scales on the right) using the Pico Quant PDM series single photon counters, see table 2 for color
code. The lower panel shows observation time estimates using ID100 detectors by IDQuantique.

dominates and the SNR adds in quadrature:

SNR = SNR(�t)
p
Tobs/�t (6)

We can now find the required observation time for a required signal to noise ratio using equation (4):

Tobs(SNR) =
SNR2

|V12|4
�t
h �A�

�2(exp [hc/�kBT]� 1)
i�2

(7)

Figure 6 shows the the observation times necessary for some example cases to reach an SNR of 1 for |V12|2 = 1.
Clearly detector technology has improved greatly in the past half century, observing Sirius Hanbury Brown and
Twiss needed a few minutes to reach a signal to noise ratio of 1 using a 5-foot searchlight mirrors. Now the same
could be done using 10cm diameter mirrors.

3.3 Signal to Noise Ratio for 3 Detectors

Over a coherence time �� there will be V123(�r��)3 excess coincidences, where V123 is the last term in equation
(3). So over a time �t there will be V123(�r)3��2�t signal coincidences. Meanwhile there will be (�r�t)3/2 of
noise, hence the signal to noise ratio is:

SNR3(�t) ⇠ V123(�r��)3/2(��/�t)1/2, (8)
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Figure 7. Upper panel: observation time estimates to reach an SNR of 1 for dishes with diameters of .1m (scales on the left)
and 10m (scales on the right) using Pico Quant PDM series single photon counters vs wavelength, see table 2 for color code.
The lower panel shows observation time estimates using ID100.

again understanding r�� as the count rate at one detector over a coherence time. We can now rewrite and
expand as before to find the observation time for a specific signal to noise ratio:

Tobs(SNR) =
SNR2

V2
123

�t2

��

h �A�

�2(exp [hc/�kBT]� 1)
i�3

(9)

As we saw from Figures 1 and 3, features with brightness differences of around 25% show up in V123 at the level
of 10�3. Figure 7 shows observation time estimates for our example cases for an SNR of 1 and V123 = 10�3.
We can immediately see that attempting three-point HBT with smaller sized telescopes is not an option but
increasing the telescope diameters dramatically reduces observation times as the cube of the area thus making
it possible to measure the bispectrum. With the equivalent of 10m diameter mirrors these should be easily
detectable in the case of Betelgeuse or Sirius.

4 OUTLOOK

The results shown in Figures 6 and 7 suggest that the recovery of HBT phase is feasible with present day detector
technology and may lead to major advances in stellar imaging. Many technical problems will need to be solved
first. The most important of these are the following.

• Designing suitable configurations for three detectors is essential. In particular, for Betelgeuse 10m diameter

© 0000 RAS, MNRAS 000, 000–000
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on which the phases of incoherent light fluctuate. The phase information of the electrical field is lost when mea-
suring the amplitude squared. The time resolution �t for measuring intensity correlations or photon coincidences
should be as quick as possible. If �t is shorter than ��, the full benefit of the signal in equation (1) is obtained.
If �t � �� the signal to noise per measurement interval SNR(�t)⌧ 1. Nevertheless, sufficient SNR can be built
up by collecting data over many many �t. The great advantage of HBT interferometry is that optical parts need
to be accurate only to ⌧ c�t. For the �t achievable nowadays, optical-path tolerances of a millimetre would be
adequate. In contrast, standard interferometry requires optical paths to be precise to better than a wavelength.

In ? famously implemented these ideas in the first stellar intensity interferometer, which measured the
diameter of Sirius. In the 1960s the Narrabri intensity interferometer was built to measure more stellar diameters
(?). At that time intensity interferometry was limited to blue-sensitive counting equipment, and after the Narrabri
instrument had observed all the hot stars it could, the technique was abandoned for a long time. The possibilities
of new, faster counters in red and infrared ranges have recently brought intensity interferometry back into focus
and arrays of telescopes such as the proposed Cherenkov Telescope Array (CTA) will allow us to exploit the effect
to a greater extent in the years to come (see for example ?). Some illustrative examples are shown in Figures 1
and 2.

The loss of phase information, as evident from the absolute value in equation (1) is the major shortcoming
of intensity interferometry. But it is not a fundamental shortcoming, because from the theory of quantum optics
developed in the 1960s (see ?, for a review), phase information can be obtained by using three telescopes in
concert.

The normalized three point correlation is:

C123 = 1+ |V12|2 + |V23|2 + |V31|2 + 2Re[V12V23V31]. (3)

V123 :⇠ Re[V12V23V31] (4)

The product in the last term is the spatial bispectrum of the source. Its phase is well known in radio astronomy
as the closure phase, and useful for eliminating local atmospheric and other influences on phase measurements
for individual detectors in a three-antenna setup. The term has also long been studied in the context of diverse
laboratory experiments: ? already used photon triple-coincidence as a tool for spectral measurement; ? con-
structed an imaging system using three-point HBT; ? performed some remarkable experiments showing three-
and four-point acoustic HBT. The analyses in these works is in terms of classical waves and intensities, so it does
not necessarily apply to photon counting, but fortunately it turns out (see for example ?) that for ordinary light,
quantum fields can be replaced with classical and intensities interpreted as photon-detection probabilities.

? recently reviewed the theory of higher order correlations and provided a simple way of estimating the
achievable SNR. In the present work, we will study the feasibility of detecting three-point HBT for astronomical
sources. In the following sections we will simulate signals for two and three point correlation measurements of
different, simple sources and make some estimates about possible SNR. We will not consider the problem of
reconstruction of the actual phase but algorithms for related problems are known (see, for example ?).

Let us now briefly preview our results.
In the next Section we show simulations of the complex visibilities and resulting correlation signals. For

example, Figure 1 shows a simulation of a structured disk, inspired by reconstructions of Betelgeuse. Comparing
that to the other figures in Section 1 we can immediately see that adequate (�,�) coverage allows to see
differences in shape and structure. We also plot the 3-point correlation signals (specifically the bispectra) for a
given baseline for different sources. Movies of these simulations for a range of different baselines to slide through
are included in the online supplement; parameters are summarized in Table 3. In particular, 3ddifffat.mov
shows the difference between a plain and a structured limb darkened disk.

In Section 3 we rederive the well-known but counterintuitive result that for two-point correlation, the SNR is
independent of bandwidth, meaning that decreasing the bandwidth and hence decreasing the count rates will
not change the SNR for HBT detection. A related feature is that the observation time needed goes as the inverse
square of the collection area. With larger telescopes such as H.E.S.S. (12 m diameter dishes) and the planned
CTA (7m, 12m, and 23m are proposed) this will allow for significant measurements on very short timescales. We
also want to emphasize again the possibilities in using arrays with many telescopes increasing the possible (�,�)
(see for example ?). For the brightest stars, size measurements would be possible with even a 10 cm diameter
mirror with modern off-the-shelf single-photon correlators. With a 10 cm diameter telescope and a counting
system at 50% efficiency one could even achieve an SNR of 1 in 36 seconds integration time for Capella b for
example. The small baselines possible with such a setup should allow the detection of the 2 point correlation for
this binary system, that would require a about a 2 meter aperture to be resolved by a single telescope.

While we have considered nearby stars as examples, the results can be trivially scaled. For example, scaling
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Picoquant PDM series

Sirius
Betelgeuse

Capella a

IDQuantique ID100

3 point observation times change to V123=.001
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take home

SNR for standard HBT is independent of bandwidth
3 point HBT measurements will depend on bandwidth

observation times for 2 point correlation go with 𝞬A⁻2 , 

for 3 point correlation with 𝞬A⁻3

Capella and Betelgeuse HBT can be done with amateur telescopes!
Telescopes of a few meters diameter could even do 3 point correlation 
for Betelgeuse recovering phase information and thus the structure in 
the atmosphere

larger telescopes could measure 3 point correlation for various types of 
astrophysical sources

since we’re not point like - will the features be washed out?
what about large scale features?
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12 m dish prototype 
CTA test facility in Berlin, Germany

(b)
subpopulation response function (to excitation)
expected proportion of subpopulation receiving at least threshold excitation
per unit time: S(�)
1. Let D(�) = distribution function of individual neural thresholds � (within a
subpopulation).
Assume: all cells receive same number of excitatory and inhibitory afferents
Thus on average all cells subjected to same averaged excitation = �(t)

S(�) =
Z �(t)

0
D(�)d� (60)

2. Let C(�) = synaptic distribution
Assume: all cells in subpopulation have same threshold but distribution of
the number of afferent synapses per cell
Thus all cells with at least �/�(t) synapses receive sufficient excitation

S(�) =
Z �

�/�(t)
C(�)d� (61)

both assume:
total number afferents reaching the cell is sufficiently large that all cells are
subjected to ⇡ �(t)
both monotonically increasing functions of �(t) with lower asymptote 0 and
upper 1 approaching ��, �, respectively. Let this be called a sigmoid if �
one and only one inflection point
if D(�) or C(�) multimodal, can be written as weighted sum of sigmoids
(could correspond to different cell types in one subpopulation)
stick to sigmoid

3. Thus, the average level of excitation �(t) generated in a cell of each
subpopulation:
Assume identical cells sum their inputs and effects of stimulation decay with
�(t)
Let c� = average number excitatory or inhibitory synapses per cell,
P(t) the external input to the excitatory subpopulation

�E(t) =
Z t

��
�(t � t0)
h
c1E(t0)� c2�(t0) + P(t0)

i
dt0 (62)

1. + 2. + 3.:
the activity in a subpopulation at time (t + �) will be equal to the proportion
of cells which are both sensitive and above threshold at time t
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