feasibility of obtaining phase information using 3 point HBT

2 point correlation: $C_{12} = 1 + |V_{12}|^2$

Universität Zürich^{uz}∺ Tina Wentz & Prasenjit Saha Feasibility of Observing Hanbury Brown and Twiss Phase, in prep.

Tuesday, May 13, 14

Sirius

complex visibility of a structured, limbdarkened disk

Tuesday, May 13, 14

complex visibility of a structured, limbdarkened disk

Tuesday, May 13, 14

HBT simulations

(u,v) coverage of one proposed CTA setup

Zurich (47°8' latitude)

Capella: declination 45°

(u,v) coverage of one proposed CTA setup

Sirius at -16°

more HBT simulations

3 point correlation

3 point correlation function:

$$C_{123} = 1 + |V_{12}|^2 + |V_{23}|^2 + |V_{31}|^2 + 2Re[V_{12}V_{23}V_{31}]$$

bispectrum:

$$V_{12}V_{23}V_{31} = |V_{12}||V_{23}||V_{31}|e^{i(\phi_{12}+(\phi_2-\phi_1)+\phi_{23}+(\phi_3-\phi_2)+\phi_{31}+(\phi_1-\phi_3))}$$
$$= |V_{12}||V_{23}||V_{31}|e^{i(\phi_{12}+\phi_{23}+\phi_{31})}$$

Aperture 1

3 point correlation for a close binary

theoretical bispectrum phase in a close binary

a comparison

find the code and examples <u>www.physik.uzh.ch/~tina/3HBT</u>

use two off the shelf single photon avalanche diode counters

Picoquant PDM series

IDQuantique ID100

detector	max efficiency	wavelength of max efficiency	time resolution Δt	dead time
Picoquant	49 %	550 nm	50 ps	80 ns
PDM series				
IDQuantique	35 %	500 nm	40 ps	45 ns
ID100 series				

$$n(\lambda)\Delta\lambda = \frac{8\pi}{\lambda^4} \frac{\Delta\lambda}{\exp\left[\frac{hc}{\lambda k_B T}\right] - 1}$$

Ο

bol 10, 13 coherence time: $\Delta \tau \sim 1/\Delta \nu = \lambda^2/c\Delta \lambda$

$$r\Delta\tau = n(\lambda)\frac{Ac\Omega}{4\pi}\Delta\tau = \frac{2Ac\Omega}{\lambda^4}\frac{\Delta\lambda}{\exp\left[hc/\lambda k_BT\right] - 1}\Delta\tau = \frac{2A\Omega}{\lambda^2(\exp\left[hc/\lambda k_BT\right] - 1)}$$

approximate rates using a black body toy model

let r be the average count rate of one detector, so in one coherence time:

$$\gamma r \Delta \tau = \frac{\gamma A \Omega}{\lambda^2 (\exp[hc/\lambda k_B T] - 1)}$$

	source	temperature	diameter
in the following we'll look at		[K]	[arcsec]
	Sirius	9940	.006
In the following we if look at.	Betelgeuse	3500	.04
	Capella a	5700	.003
	Capella b	4940	.004

Tuesday, May 13, 14

signal to noise ratio and observation times 2 point correlation: $C_{12} = 1 + |V_{12}|^2$

$$SNR \sim \frac{r^2 \Delta \tau \Delta t}{r \Delta t} = r \Delta \tau$$

the signal to noise ratio for an integration time:

 $SNR(\Delta t) = |V_{12}|^2 \gamma r \Delta \tau$ $SNR = SNR(\Delta t) \sqrt{T_{obs}/\Delta t}$

necessary observation time:

$$T_{\rm obs}(SNR) = \frac{SNR^2}{|V_{12}|^4} \Delta t \Big[\frac{\gamma A \Omega}{\lambda^2 (\exp[hc/\lambda k_B T] - 1)} \Big]^{-2}$$

we are now talking about geometric means of the collection area of two telescopes and their photon counters' efficiencies.

Tuesday, May 13, 14

signal to noise ratio and observation times for 3 point correlation

the signal to noise ratio for an integration time:

 $SNR_3(\Delta t) \sim V_{123}(\gamma r \Delta \tau)^{3/2} (\Delta \tau / \Delta t)^{1/2}$

where: $V_{123} : \sim \text{Re}[V_{12}V_{23}V_{31}]$

necessary observation time:

$$T_{\rm obs}(SNR) = \frac{SNR^2}{V_{123}^2} \frac{\Delta t^2}{\Delta \tau} \Big[\frac{\gamma A \Omega}{\lambda^2 (\exp[hc/\lambda k_B T] - 1)} \Big]^{-3}$$

this is where bandwidth comes in to haunt us.

take home

SNR for standard HBT is independent of bandwidth 3 point HBT measurements will depend on bandwidth

```
observation times for 2 point correlation go with \gamma A^{-2}, for 3 point correlation with \gamma A^{-3}
```

Capella and Betelgeuse HBT can be done with amateur telescopes! Telescopes of a few meters diameter could even do 3 point correlation for Betelgeuse recovering phase information and thus the structure in the atmosphere

larger telescopes could measure 3 point correlation for various types of astrophysical sources

since we're not point like - will the features be washed out? what about large scale features?

I2 m dish prototype CTA test facility in Berlin, Germany

1 51 10

Tuesday, May 13, 14

Dec. 2013