

The Hanbury Brown Twiss effect for matter waves

Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

- ... in optics and astronomy
 with matter ways
- 2. ... with matter waves
- 3. ... and "superradiance"

Michelson stellar interferometer

$$\theta < \lambda/d \rightarrow fringes$$

 $d \sim 6m \rightarrow \theta_{min} \sim 10^{-7}$
Michelson measured the angular diameters of 6 (big) stars.

Hanbury Brown: intensity interferometry

The noise in two optical (or radio) telescopes should be correlated for sufficiently small separations *d*. Reminiscent of Michelson's interferometer to measure stellar diameters, but less sensitive to vibrations or atmospheric fluctuation. But what was interfering?

HBT stellar interferometer principle

Starlight produces rapidly fluctuating speckle on the earth. The size of the speckle is:

 $d_{\text{speckle}} \sim \lambda L/s \sim \lambda/\theta$

Intensity fluctuations within one speckle are correlated so that $\langle I_1 I_1 \rangle \geq \langle I_2 \rangle \langle I_2 \rangle$

Visualisation de speckle

Stellar interferometer in Australia 1960's

Figure 1. Aerial photo and illustration of the original HBT apparatus. They have been extracted from Ref.[1].

Measurement of a stellar diameter (1957)

 $g^{(2)}-1$ for Sirius $\theta = 3 \times 10^{-8}$ radians

Independent photons from different points on a star "stick together" - photon bunching

What about a laser?

Coherence length is very long. Strong correlations? Some said "yes"

What about a laser?

LASER

Coherence length is very long. Strong correlations? Some said "yes"

Glauber, PRL 10, 84 (1963)

"The fact that photon correlations are enhanced by narrowing the spectral bandwidth has led to a prediction of large-scale correlations to be observed in the beam of an optical maser. We shall indicate that this prediction is misleading and follows from an inappropriate model of the maser beam."

Correlations in a laser: measurement

Fig. 1. Conditional probability $p_{\rm C}(\tau)$ of a second count occurring at a time τ after a first has occurred at time $\tau = 0$. Arecchi, Gatti, Sona, Phys. Lett. 1966 Temporal fluctations are only due to shot noise.

$$g^{(2)}(\tau) = 1$$

HBT with atoms: the team

missing: Marc Cheneau, Almazbek Imanaliev

HBT with atoms: the idea

- Source: cloud of 10⁵ metastable He atoms
- Time of flight ~ 300 ms parabolic trajectories
- Detector: µ-channel plate ~10⁴ parallel detectors
- Record x,y,t for every detected atom

~ | mm

Typical coherence length

50 cm

HBT with atoms: the idea

- Source: cloud of 10⁵ metastable He atoms
- Time of flight ~ 300 ms parabolic trajectories
- Detector: µ-channel plate ~10⁴ parallel detectors
- Record x,y,t for every detected atom

~ | mm

Typical coherence length

 $\frac{\hbar t}{ms} = \frac{\hbar}{mv} \frac{vt}{s} = \lambda \frac{L}{s}$

Photo

Atoms dropped onto detector

Normalized correlation functions

M. Schellekens et al. *Science*, **310**, 648 (2005) T. Jeltes et al. *Nature* **445**, 402 (2007) comparison of a bose gas, a BEC and a fermi gas

Other matterwave HBT experiments

- optical lattices
- cold atom collisions
- heavy ion collisions
- free electrons
- electrons in metals

Higher order correlations $g^{(4)}$ Dall et al., Nat. Phys. (2013)

 $A_n \sim n!$ $\sigma_n \sim \sigma_1 / \sqrt{n} \quad (?)$

More complex: collective emission

Thermal radiation shows a HBT effect. "Coherent" radiation does not. What about superradiance?

What is superradiance? Inouye et al. Science 285, 571 (1999)

- Sufficient optical thickness that one spontaneous photon stimulates additional deexcitations, *i.e.* gain
- Strong enhancement of emission rate

excited atom

ground state atom

A "mirrorless laser" amplified spontaneous emission, superfluorescence, ... Thought to exist in astrophysical settings

Experiment

angular distribution of atom recoils

Correlation functions, $g^{(2)}$

- orange: all but the superradiant peak
- black: coherent seed beam

Superradiance appears to be thermal. What about other mirrorless emission phenomena such as random lasers?

> Lopes et al., arXiv:1312.6772 and poster

Superradiance: setup

Superradiance: angular distribution

In the trap: (anisotropic in *p*)

$$I_{coh} \sim \lambda_{dB} \sim \frac{\hbar}{\Delta p}$$
 $P_{coh} = \hbar/s$

After expansion, measured positions correspond to momenta. After a time of flight *t*:

$$\rightarrow l_{coh} = \frac{\hbar t}{ms}$$

Analogy with optical speckle:

$$\frac{\hbar t}{ms} = \frac{\hbar}{mv} \frac{vt}{s} = \lambda \frac{L}{s}$$

Metastable helium and 3D detection

$$2^{3}S_{1}$$
 (He*)
 $1^{1}S_{0}$
 $1^{1}S_{0}$

- detection by µ-channel plate (He* has 20 eV)
- excellent time (vertical) resolution
- single atom detection 20% quantum eff.
- ~ 500 µm horiz. res. 5×10⁴ detectors in //
- ~ 200 ns deadtime

Einstein, Sitz. Ber. Preuss. Ak., 1925, p. 18

Number fluctuations in an ideal quantum gas $\delta N^2 = \langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle + \langle N \rangle^2 / z$

 $z = (\Delta p \Delta x/h)^3$ is the number of phase space cells in the volume.

 $\langle N \rangle$ "... if the molecules were independent" $\langle N \rangle^2$ "... interference fluctuations" interferenzschwankungen "... a mutual influence between molecules of a currently altogether puzzling nature." eine gegenseitige Beeinflussung der Moleküle von vorläufig ganz rätselhafter Art