Optical Systems and Focal Plane Cameras for the Cherenkov Telescope Array

Akira Okumura for the CTA Consortium

Solar-Terrestrial Environment Laboratory, Nagoya University (Japan) University of Leicester (UK)

at Workshop on Hanbury Brown & Twiss interferometry, Nice, France May 12–13, 2014

Cherenkov Telescope Array (CTA)

A Mixed Array of Four Different Telescopes

Detection Technique of VHE Gamma Rays

Detection Technique of VHE Gamma Rays

The Basic Elements of the Cherenkov Telescope Array

- A large primary mirror with segmented facets
 - Collect as many as photons possible to achieve a low energy threshold
 - Less expensive (a factor of 0.01 compared to astronomers' telescopes)
 - Can reduce coma aberration in Davies-Cotton systems
- Optical system
 - Parabolic system for LSTs to avoid timing spread of arrival photons
 - Davies-Cotton system for MSTs and/or SSTs to achieve wide FOV of ~8°
 - Schwarzschild-Couder system (primary and secondary mirrors) for SCTs and/or SSTs to high resolution of ~0.05° over wide FOV of ~8°
 - Time spread < ~1 ns</p>
- Camera
 - Pixel size of ~0.1° (Cherenkov event image size ~ 1° × ~0.5°)
 - Fast and UV sensitive photodetectors (PMTs or SiPMs), some are AC coupled
 - Analog to digital conversion, fast signal sampling ~0.25 to 1 GHz, & trigger

Large-Sized Telescopes (LSTs)

- Segmented parabolic mirror
- *f* = 28 m, *D* = 23 m, FOV = 4.5°
- Pixel = 50 mm (× 1,855 PMTs)
- $PSF_{D80} = \sim 0.05 0.2^{\circ} (pix = 0.1^{\circ})$
- 1 optical system and 1 camera designs

Medium-Sized Telescopes (MSTs)

- Davies-Cotton optical system
- *f* = 16 m, *D* = 12 m, FOV = 8°
- Pixel = 50 mm (× ~1,800 PMTs)
- $PSF_{D68} = \sim 0.08 0.2^{\circ} (pix = 0.18^{\circ})$
- I optics and 2 camera designs

Schwarzschild-Couder Telescopes (SCTs)

- Schwarzschild-Couder optics
- $f = 5.6 \text{ m}, D = 9.6 \text{ m}, \text{FOV} = 8^{\circ}$
- Pixel = 6 mm (× 11,328 SiPMs)
- PSF_{D68} = ~0.04 0.08°(pix = 0.06°)
- I optics and 1 camera designs

Small-Sized Telescopes (SSTs)

The LST Optical System

- 198 spherical segmented mirrors (387 m²)
- The on-axis performance is the best, as the system is parabolic
- Large coma aberration may be problematic if we put a HBT detector at the camera edge

LST Mirrors

Cold Slumping Technique

- Production with the cold slumping technique and sputtering
- The mirror surface quality is checked with the Phase Measuring Deflectometry (PMD) method
- Measured and simulated PSF sizes are quite nice ~20% of a pixel

The LST Camera

- 1,855 PMTs (UV sensitive)
- Digitizes PMT waveforms at 1 GHz, but continuous recording is not possible
- May be possible to install a dedicated detector at the center
 - Needs strong requests before finalizing the design!

The SCT Optical System

Mirrors' quality and misalignment are not included

- The first optical system with a secondary mirror in gamma-ray astronomy
- 48 and 24 segmented aspherical mirrors for the primary and the secondary, respectively
- PSF will be dominated by the mirrors' quality and misalignment, so it will be more uniform over the FOV ~0.05 – 0.1°

The SCT Camera

- 11,328 channels (× 4 SiPMs)
- Signal digitization is done by very compact and low power consumption camera modules (w/TARGET ASICs)
- The camera center will be used for optics alignment and calibration

The SST-GATE Optical System

Simulation with ROBAST by Cameron Rulten (Obs. Paris)

- One of three telescope designs, based on the Schwarzschild-Couder optical system
- 6 segmented primary mirrors, and a monolithic secondary
- ~0.05 0.15° over the FOV

Compact High-Energy Camera (CHEC) for SST

- Compatible with both the SST-GATE and ASTRI optical systems
- Sharing the common technologies with the SCT camera
- 2,048 channels (× 4 SiPMs)
- Again, it is difficult to put a dedicated detector for HBT interferometry

Where to Put Photodetectors for Interferometry?

- LSTs and MSTs could have a dedicated photodetector at the centers of the cameras (but negotiations and feasibility study will be needed)
- SCT and CHEC cannot, because an individual camera module has 64 channels
- LST/MST/SCT have outskirts in the camera boxes, but the PSF is not excellent
- The photon incident angle distribution at the focal plane is 0 to ~25 deg for LST, ~30 to ~60 deg for SCT and SST

Summary

- Different designs of optical systems and cameras are being developed in CTA
 - LST (parabolic), MST (Davies-Cotton), SCT (Schwarzschild-Couder), SST (DC or SC)
 - Two and three cameras for MST and SST, respectively
- They are all sensitive to UV (300 500 nm)
- Typical PSF (D₈₀) is ~0.05 0.1° (on-axis)
- The default camera systems are of course designed only for gammaray astronomy
- Need feedback and requests for the CTA camera teams
 - Willing to provide you the specifications and parameters of CTA
 - It is not easy to replace a camera pixel with a dedicated detector after installation
 - We are finalizing camera designs!